When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Miquel's theorem - Wikipedia

    en.wikipedia.org/wiki/Miquel's_theorem

    Draw three circumcircles (Miquel's circles) to triangles AB´C´, A´BC´, and A´B´C. Miquel's theorem states that these circles intersect in a single point M, called the Miquel point. In addition, the three angles MA´B, MB´C and MC´A (green in the diagram) are all equal, as are the three supplementary angles MA´C, MB´A and MC´B. [2] [3]

  3. Lune (geometry) - Wikipedia

    en.wikipedia.org/wiki/Lune_(geometry)

    In plane geometry, a lune (from Latin luna 'moon') is the concave-convex region bounded by two circular arcs. [1] It has one boundary portion for which the connecting segment of any two nearby points moves outside the region and another boundary portion for which the connecting segment of any two nearby points lies entirely inside the region.

  4. Intersecting chords theorem - Wikipedia

    en.wikipedia.org/wiki/Intersecting_chords_theorem

    The value of the two products in the chord theorem depends only on the distance of the intersection point S from the circle's center and is called the absolute value of the power of S; more precisely, it can be stated that: | | | | = | | | | = where r is the radius of the circle, and d is the distance between the center of the circle and the ...

  5. Special cases of Apollonius' problem - Wikipedia

    en.wikipedia.org/wiki/Special_cases_of_Apollonius...

    To generate the line that bisects the angle between two given rays [clarification needed] requires a circle of arbitrary radius centered on the intersection point P of the two lines (2). The intersection points of this circle with the two given lines (5) are T1 and T2. Two circles of the same radius, centered on T1 and T2, intersect at points P ...

  6. Intersection (geometry) - Wikipedia

    en.wikipedia.org/wiki/Intersection_(geometry)

    This special line is the radical line of the two circles. Intersection of two circles with centers on the x-axis, their radical line is dark red. Special case = = = : In this case the origin is the center of the first circle and the second center lies on the x-axis (s. diagram).

  7. Intersecting secants theorem - Wikipedia

    en.wikipedia.org/wiki/Intersecting_secants_theorem

    Next to the intersecting chords theorem and the tangent-secant theorem, the intersecting secants theorem represents one of the three basic cases of a more general theorem about two intersecting lines and a circle - the power of point theorem.

  8. Constant chord theorem - Wikipedia

    en.wikipedia.org/wiki/Constant_chord_theorem

    The constant chord theorem is a statement in elementary geometry about a property of certain chords in two intersecting circles. The circles k 1 {\displaystyle k_{1}} and k 2 {\displaystyle k_{2}} intersect in the points P {\displaystyle P} and Q {\displaystyle Q} .

  9. Mohr–Mascheroni theorem - Wikipedia

    en.wikipedia.org/wiki/Mohr–Mascheroni_theorem

    D, the other point of intersection of the two circles, is the reflection of C across the line AB. If C = D (that is, there is a unique point of intersection of the two circles), then C is its own reflection and lies on the line AB (contrary to the assumption), and the two circles are internally tangential.