When.com Web Search

  1. Ad

    related to: consecutive interior angles theorem

Search results

  1. Results From The WOW.Com Content Network
  2. Transversal (geometry) - Wikipedia

    en.wikipedia.org/wiki/Transversal_(geometry)

    Consecutive interior angles are the two pairs of angles that: [4] [2] have distinct vertex points, lie on the same side of the transversal and; are both interior. Two lines are parallel if and only if the two angles of any pair of consecutive interior angles of any transversal are supplementary (sum to 180°).

  3. Internal and external angles - Wikipedia

    en.wikipedia.org/wiki/Internal_and_external_angles

    The interior angle concept can be extended in a consistent way to crossed polygons such as star polygons by using the concept of directed angles.In general, the interior angle sum in degrees of any closed polygon, including crossed (self-intersecting) ones, is then given by 180(n–2k)°, where n is the number of vertices, and the strictly positive integer k is the number of total (360 ...

  4. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    Alternate Interior Angles Theorem ; Alternate segment theorem ; Albert–Brauer–Hasse–Noether theorem ; Alchian–Allen theorem ; Alexandrov's uniqueness theorem (discrete geometry) Alperin–Brauer–Gorenstein theorem (finite groups) Alspach's theorem (graph theory) Amitsur–Levitzki theorem (linear algebra)

  5. Parallel postulate - Wikipedia

    en.wikipedia.org/wiki/Parallel_postulate

    If the sum of the interior angles α and β is less than 180°, the two straight lines, produced indefinitely, meet on that side. In geometry, the parallel postulate, also called Euclid's fifth postulate because it is the fifth postulate in Euclid's Elements, is a distinctive axiom in Euclidean geometry.

  6. AA postulate - Wikipedia

    en.wikipedia.org/wiki/AA_postulate

    In Euclidean geometry, the AA postulate states that two triangles are similar if they have two corresponding angles congruent. The AA postulate follows from the fact that the sum of the interior angles of a triangle is always equal to 180°. By knowing two angles, such as 32° and 64° degrees, we know that the next angle is 84°, because 180 ...

  7. Angle - Wikipedia

    en.wikipedia.org/wiki/Angle

    In general, the measures of the interior angles of a simple convex polygon with n sides add up to (n − 2) π radians, or (n − 2)180 degrees, (n − 2)2 right angles, or (n − 2) ⁠ 1 / 2 ⁠ turn. The supplement of an interior angle is called an exterior angle; that is, an interior angle and an exterior angle form a linear pair of angles ...

  8. Exterior angle theorem - Wikipedia

    en.wikipedia.org/wiki/Exterior_angle_theorem

    The high school exterior angle theorem (HSEAT) says that the size of an exterior angle at a vertex of a triangle equals the sum of the sizes of the interior angles at the other two vertices of the triangle (remote interior angles). So, in the picture, the size of angle ACD equals the size of angle ABC plus the size of angle CAB.

  9. Two ears theorem - Wikipedia

    en.wikipedia.org/wiki/Two_ears_theorem

    By the Jordan curve theorem, it separates the plane into two regions, one of which (the interior of the polygon) is bounded. An ear of a polygon is defined as a triangle formed by three consecutive vertices u , v , w {\displaystyle u,v,w} of the polygon, such that its edge u w {\displaystyle uw} lies entirely in the interior of the polygon.