Ad
related to: active transport webquest worksheet
Search results
Results From The WOW.Com Content Network
There are two types of active transport: primary active transport that uses adenosine triphosphate (ATP), and secondary active transport that uses an electrochemical gradient. This process is in contrast to passive transport , which allows molecules or ions to move down their concentration gradient, from an area of high concentration to an area ...
Diffusion vs. Transport. In biology, an ion transporter is a transmembrane protein that moves ions (or other small molecules) across a biological membrane to accomplish many different biological functions, including cellular communication, maintaining homeostasis, energy production, etc. [1] There are different types of transporters including pumps, uniporters, antiporters, and symporters.
Cotransporters are a subcategory of membrane transport proteins (transporters) that couple the favorable movement of one molecule with its concentration gradient and unfavorable movement of another molecule against its concentration gradient. They enable coupled or cotransport (secondary active transport) and include antiporters and symporters.
The transport of glucose across the proximal tubule cell membrane involves a complex process of secondary active transport (also known as co-transport). [3] This process begins with the Na + /K + ATPase on the basolateral membrane. This enzyme uses ATP to pump 3 sodium ions out of the cell into the blood while bringing 2 potassium ions into the ...
The Na–K–Cl cotransporter (NKCC) is a transport protein that aids in the secondary active transport of sodium, potassium, and chloride into cells. [1] In humans there are two isoforms of this membrane transport protein, NKCC1 and NKCC2, encoded by two different genes (SLC12A2 and SLC12A1 respectively). Two isoforms of the NKCC1/Slc12a2 gene ...
Exocytosis (/ ˌ ɛ k s oʊ s aɪ ˈ t oʊ s ɪ s / [1] [2]) is a form of active transport and bulk transport in which a cell transports molecules (e.g., neurotransmitters and proteins) out of the cell (exo-+ cytosis). As an active transport mechanism, exocytosis requires the use of energy to transport material.
Active transport is the movement of a substance across a membrane against its concentration gradient. This is usually to accumulate high concentrations of molecules that a cell needs, such as glucose or amino acids. If the process uses chemical energy, such as adenosine triphosphate (ATP), it is called primary active transport.
Secondary active transport is when one solute moves down the electrochemical gradient to produce enough energy to force the transport of another solute from low concentration to high concentration. [ citation needed ] An example of where this occurs is in the movement of glucose within the proximal convoluted tubule (PCT).