Ads
related to: control volume physics calculator answerssmartsolve.ai has been visited by 10K+ users in the past month
Search results
Results From The WOW.Com Content Network
The closed surface enclosing the region is referred to as the control surface. [1] At steady state, a control volume can be thought of as an arbitrary volume in which the mass of the continuum remains constant. As a continuum moves through the control volume, the mass entering the control volume is equal to the mass leaving the control volume.
Traditionally, most of theoretical models are based on Bernoulli equation after taking the frictional losses into account using a control volume (Fig. 2). The frictional loss is described using the Darcy–Weisbach equation. One obtains a governing equation of dividing flow as follows: Fig. 2. Control volume
Where the sum of forces on the contents of a control volume in the open channel is equal to the sum of the time rate of change of the linear momentum of the contents of the control volume, plus the net rate of flow of linear momentum through the control surface. [1] The momentum principle may always be used for hydrodynamic force calculations. [2]
where Ω represents the control volume. Since this equation must hold for any control volume, it must be true that the integrand is zero, from this the Cauchy momentum equation follows. The main step (not done above) in deriving this equation is establishing that the derivative of the stress tensor is one of the forces that constitutes F i. [1]
On the other hand, the pressure in thermodynamics is the opposite of the partial derivative of the specific internal energy with respect to the specific volume: (,) = (,) since the internal energy in thermodynamics is a function of the two variables aforementioned, the pressure gradient contained into the momentum equation should be explicited ...
Hirsch, C. (1990), Numerical Computation of Internal and External Flows, Volume 2: Computational Methods for Inviscid and Viscous Flows, Wiley. Laney, Culbert B.(1998), Computational Gas Dynamics, Cambridge University Press. LeVeque, Randall(1990), Numerical Methods for Conservation Laws, ETH Lectures in Mathematics Series, Birkhauser-Verlag.
Specific volume is the volume occupied by a unit of mass of a material. [1] In many cases, the specific volume is a useful quantity to determine because, as an intensive property, it can be used to determine the complete state of a system in conjunction with another independent intensive variable .
Here is the normal to the surface of control volume. Ignoring the source term, the equation further reduces to: ) = () A picture showing the control volume with ...