When.com Web Search

  1. Ads

    related to: control volume physics calculator answers

Search results

  1. Results From The WOW.Com Content Network
  2. Control volume - Wikipedia

    en.wikipedia.org/wiki/Control_volume

    The closed surface enclosing the region is referred to as the control surface. [1] At steady state, a control volume can be thought of as an arbitrary volume in which the mass of the continuum remains constant. As a continuum moves through the control volume, the mass entering the control volume is equal to the mass leaving the control volume.

  3. Flow distribution in manifolds - Wikipedia

    en.wikipedia.org/wiki/Flow_distribution_in_manifolds

    Traditionally, most of theoretical models are based on Bernoulli equation after taking the frictional losses into account using a control volume (Fig. 2). The frictional loss is described using the Darcy–Weisbach equation. One obtains a governing equation of dividing flow as follows: Fig. 2. Control volume

  4. Chézy formula - Wikipedia

    en.wikipedia.org/wiki/Chézy_formula

    Where the sum of forces on the contents of a control volume in the open channel is equal to the sum of the time rate of change of the linear momentum of the contents of the control volume, plus the net rate of flow of linear momentum through the control surface. [1] The momentum principle may always be used for hydrodynamic force calculations. [2]

  5. Cauchy momentum equation - Wikipedia

    en.wikipedia.org/wiki/Cauchy_momentum_equation

    where Ω represents the control volume. Since this equation must hold for any control volume, it must be true that the integrand is zero, from this the Cauchy momentum equation follows. The main step (not done above) in deriving this equation is establishing that the derivative of the stress tensor is one of the forces that constitutes F i. [1]

  6. Euler equations (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler_equations_(fluid...

    On the other hand, the pressure in thermodynamics is the opposite of the partial derivative of the specific internal energy with respect to the specific volume: (,) = (,) since the internal energy in thermodynamics is a function of the two variables aforementioned, the pressure gradient contained into the momentum equation should be explicited ...

  7. Finite volume method for two dimensional diffusion problem

    en.wikipedia.org/wiki/Finite_volume_method_for...

    Hirsch, C. (1990), Numerical Computation of Internal and External Flows, Volume 2: Computational Methods for Inviscid and Viscous Flows, Wiley. Laney, Culbert B.(1998), Computational Gas Dynamics, Cambridge University Press. LeVeque, Randall(1990), Numerical Methods for Conservation Laws, ETH Lectures in Mathematics Series, Birkhauser-Verlag.

  8. Volume (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Volume_(thermodynamics)

    Specific volume is the volume occupied by a unit of mass of a material. [1] In many cases, the specific volume is a useful quantity to determine because, as an intensive property, it can be used to determine the complete state of a system in conjunction with another independent intensive variable .

  9. Total variation diminishing - Wikipedia

    en.wikipedia.org/wiki/Total_variation_diminishing

    Here is the normal to the surface of control volume. Ignoring the source term, the equation further reduces to: ) = () A picture showing the control volume with ...