Ads
related to: statement and reason geometry examples
Search results
Results From The WOW.Com Content Network
This meant that ancient geometry (and Euclidean Geometry) discussed circles. The earliest form of mathematics was phenomenological . For example, if someone could draw a reasonable picture, or give a convincing description, then that met all the criteria for something to be described as a mathematical “fact”.
Presenting many cases in which the statement holds is not enough for a proof, which must demonstrate that the statement is true in all possible cases. A proposition that has not been proved but is believed to be true is known as a conjecture , or a hypothesis if frequently used as an assumption for further mathematical work.
Such a proof is again a refutation by contradiction. A typical example is the proof of the proposition "there is no smallest positive rational number": assume there is a smallest positive rational number q and derive a contradiction by observing that q / 2 is even smaller than q and still positive.
In mathematics, certain kinds of mistaken proof are often exhibited, and sometimes collected, as illustrations of a concept called mathematical fallacy.There is a distinction between a simple mistake and a mathematical fallacy in a proof, in that a mistake in a proof leads to an invalid proof while in the best-known examples of mathematical fallacies there is some element of concealment or ...
An example traditionally used by logicians contrasting sufficient and necessary conditions is the statement "If there is fire, then oxygen is present". An oxygenated environment is necessary for fire or combustion, but simply because there is an oxygenated environment does not necessarily mean that fire or combustion is occurring.
The Elements begins with plane geometry, still taught in secondary school (high school) as the first axiomatic system and the first examples of mathematical proofs. It goes on to the solid geometry of three dimensions. Much of the Elements states results of what are now called algebra and number theory, explained in geometrical language. [1]
In mathematics and other fields, [a] a lemma (pl.: lemmas or lemmata) is a generally minor, proven proposition which is used to prove a larger statement. For that reason, it is also known as a "helping theorem" or an "auxiliary theorem".
In this case, if a proof uses this statement, researchers will often look for a new proof that does not require the hypothesis (in the same way that it is desirable that statements in Euclidean geometry be proved using only the axioms of neutral geometry, i.e. without the parallel postulate).