When.com Web Search

  1. Ad

    related to: example of time series forecasting

Search results

  1. Results From The WOW.Com Content Network
  2. Time series - Wikipedia

    en.wikipedia.org/wiki/Time_series

    Time series analysis comprises methods for analyzing time series data in order to extract meaningful statistics and other characteristics of the data. Time series forecasting is the use of a model to predict future values based on previously observed values.

  3. Box–Jenkins method - Wikipedia

    en.wikipedia.org/wiki/Box–Jenkins_method

    The original model uses an iterative three-stage modeling approach: Model identification and model selection: making sure that the variables are stationary, identifying seasonality in the dependent series (seasonally differencing it if necessary), and using plots of the autocorrelation (ACF) and partial autocorrelation (PACF) functions of the dependent time series to decide which (if any ...

  4. Forecasting - Wikipedia

    en.wikipedia.org/wiki/Forecasting

    This forecasting method is only suitable for time series data. [17] Using the naïve approach, forecasts are produced that are equal to the last observed value. This method works quite well for economic and financial time series, which often have patterns that are difficult to reliably and accurately predict. [17]

  5. Autoregressive moving-average model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_moving...

    The CRAN task view on Time Series contains links to most of these. Mathematica has a complete library of time series functions including ARMA. [11] MATLAB includes functions such as arma, ar and arx to estimate autoregressive, exogenous autoregressive and ARMAX models. See System Identification Toolbox and Econometrics Toolbox for details.

  6. Autoregressive integrated moving average - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_integrated...

    Time Series Analysis and Its Applications: With R Examples. Springer. DOI: 10.1007/978-3-319-52452-8; ARIMA Models in R. Become an expert in fitting ARIMA (autoregressive integrated moving average) models to time series data using R.

  7. Exponential smoothing - Wikipedia

    en.wikipedia.org/wiki/Exponential_smoothing

    Exponential smoothing or exponential moving average (EMA) is a rule of thumb technique for smoothing time series data using the exponential window function. Whereas in the simple moving average the past observations are weighted equally, exponential functions are used to assign exponentially decreasing weights over time. It is an easily learned ...

  8. Forecast either to existing data (static forecast) or "ahead" (dynamic forecast, forward in time) with these ARMA terms. Apply the reverse filter operation (fractional integration to the same level d as in step 1) to the forecasted series, to return the forecast to the original problem units (e.g. turn the ersatz units back into Price).

  9. Bayesian structural time series - Wikipedia

    en.wikipedia.org/.../Bayesian_structural_time_series

    Bayesian structural time series (BSTS) model is a statistical technique used for feature selection, time series forecasting, nowcasting, inferring causal impact and other applications. The model is designed to work with time series data. The model has also promising application in the field of analytical marketing. In particular, it can be used ...