Search results
Results From The WOW.Com Content Network
Upon heating, 2,4,6-trinitrobenzoic acid undergoes decarboxylation to give 1,3,5-trinitrobenzene. [4] Reduction with tin gives 2,4,6-triaminobenzenoic acid, a precursor to phloroglucinol (1,3,5-trihydroxybenzene).
In commercial applications, the alkylating agents are generally alkenes, some of the largest scale reactions practiced in industry.Such alkylations are of major industrial importance, e.g. for the production of ethylbenzene, the precursor to polystyrene, from benzene and ethylene and for the production of cumene from benzene and propene in cumene process:
Here decarbonylation accompanies the preparation of cyclopentadienyliron dicarbonyl dimer: 2 Fe(CO) 5 + C 10 H 12 → (η 5 −C 5 H 5) 2 Fe 2 (CO) 4 + 6 CO + H 2. Decarbonylation can be induced photochemically as well as using reagents such as trimethylamine N-oxide: Me 3 NO + L + Fe(CO) 5 → Me 3 N + CO 2 + LFe(CO) 4
Phenyltropanes (PTs) are a family of chemical compounds originally derived from structural modification of cocaine.The main feature differentiating phenyltropanes from cocaine is that they lack the ester functionality at the 3-position terminating in the benzene; and thusly the phenyl is attached direct to the tropane skeleton with no further spacer (therefore the name "phenyl"-tropane) that ...
Decarboxylation is a chemical reaction that removes a carboxyl group and releases carbon dioxide (CO 2). Usually, decarboxylation refers to a reaction of carboxylic acids , removing a carbon atom from a carbon chain.
Dehydration may be accompanied by decarboxylation when an activated carboxyl group is present. The aldol addition product can be dehydrated via two mechanisms; a strong base like potassium t -butoxide , potassium hydroxide or sodium hydride deprotonates the product to an enolate , which eliminates via the E1cB mechanism , [ 9 ] [ 10 ] while ...
The Darzens reaction (also known as the Darzens condensation or glycidic ester condensation) is the chemical reaction of a ketone or aldehyde with an α-haloester in the presence of a base to form an α,β-epoxy ester, also called a "glycidic ester".
The benzilic acid rearrangement is formally the 1,2-rearrangement of 1,2-diketones to form α-hydroxy–carboxylic acids using a base.This reaction receives its name from the reaction of benzil with potassium hydroxide to form benzilic acid.