Search results
Results From The WOW.Com Content Network
In mathematics and other fields, [a] a lemma (pl.: lemmas or lemmata) is a generally minor, proven proposition which is used to prove a larger statement. For that reason, it is also known as a "helping theorem " or an "auxiliary theorem".
Burnside's lemma also known as the Cauchy–Frobenius lemma; Frattini's lemma (finite groups) Goursat's lemma; Mautner's lemma (representation theory) Ping-pong lemma (geometric group theory) Schreier's subgroup lemma; Schur's lemma (representation theory) Zassenhaus lemma
In mathematics, a fundamental theorem is a theorem which is considered to be central and conceptually important for some topic. For example, the fundamental theorem of calculus gives the relationship between differential calculus and integral calculus . [ 1 ]
In mathematics, a lemma is an auxiliary theorem which is typically used as a stepping stone to prove a bigger theorem. See lemma for a more detailed explanation. Subcategories
It is used to prove Kronecker's lemma, which in turn, is used to prove a version of the strong law of large numbers under variance constraints. It may be used to prove Nicomachus's theorem that the sum of the first n {\displaystyle n} cubes equals the square of the sum of the first n {\displaystyle n} positive integers.
In mathematical logic, a theory (also called a formal theory) is a set of sentences in a formal language.In most scenarios a deductive system is first understood from context, after which an element of a deductively closed theory is then called a theorem of the theory.
In morphology and lexicography, a lemma (pl.: lemmas or lemmata) is the canonical form, [1] dictionary form, or citation form of a set of word forms. [2] In English, for example, break , breaks , broke , broken and breaking are forms of the same lexeme , with break as the lemma by which they are indexed.
One theorem is another's lemma, though the mathematical language applies a nomenclature that generally tends to call only some things lemmas and others theorems by convention, or, because the word "theorem" is used when referring to more important or valuable theorems while lemmas are seen as less theorems which support more important theorems.