Search results
Results From The WOW.Com Content Network
The Robertson–Seymour theorem is named after mathematicians Neil Robertson and Paul D. Seymour, who proved it in a series of twenty papers spanning over 500 pages from 1983 to 2004. [3] Before its proof, the statement of the theorem was known as Wagner's conjecture after the German mathematician Klaus Wagner , although Wagner said he never ...
Another result relating the four-color theorem to graph minors is the snark theorem announced by Robertson, Sanders, Seymour, and Thomas, a strengthening of the four-color theorem conjectured by W. T. Tutte and stating that any bridgeless 3-regular graph that requires four colors in an edge coloring must have the Petersen graph as a minor. [15]
The Robertson–Seymour theorem proves that subcubic graphs (simple or not) are well-founded by homeomorphic embeddability, implying such a sequence cannot be infinite. Then, by applying KÅ‘nig's lemma on the tree of such sequences under extension, for each value of k there is a sequence with maximal length.
The graph structure theorem provides such a "good reason" in the form of a rough description of the structure of G. In essence, every H -free graph G suffers from one of two structural deficiencies: either G is "too thin" to have H as a minor, or G can be (almost) topologically embedded on a surface that is too simple to embed H upon.
If a family F of graphs is closed under taking minors (every minor of a member of F is also in F), then by the Robertson–Seymour theorem F can be characterized as the graphs that do not have any minor in X, where X is a finite set of forbidden minors. [42]
Robertson's example of a non-YΔY-reducible apex graph. A connected graph is YΔY-reducible if it can be reduced to a single vertex by a sequence of steps, each of which is a Δ-Y or Y-Δ transform , the removal of a self-loop or multiple adjacency, the removal of a vertex with one neighbor, and the replacement of a vertex of degree two and its ...
Therefore, by the Robertson–Seymour theorem, the linklessly embeddable graphs have a forbidden graph characterization as the graphs that do not contain any of a finite set of minors. [ 3 ] The set of forbidden minors for the linklessly embeddable graphs was identified by Sachs (1983) : the seven graphs of the Petersen family are all minor ...
Robertson, Seymour & Thomas (1993) proved the conjecture for =, also using the four color theorem; their paper with this proof won the 1994 Fulkerson Prize. It follows from their proof that linklessly embeddable graphs , a three-dimensional analogue of planar graphs, have chromatic number at most five. [ 3 ]