Search results
Results From The WOW.Com Content Network
expression 1, expression 2: Expressions with values of any type. If the condition is evaluated to true, the expression 1 will be evaluated. If the condition is evaluated to false, the expression 2 will be evaluated. It should be read as: "If condition is true, assign the value of expression 1 to result.
[2] [3] Thus, in the expression 1 + 2 × 3, the multiplication is performed before addition, and the expression has the value 1 + (2 × 3) = 7, and not (1 + 2) × 3 = 9. When exponents were introduced in the 16th and 17th centuries, they were given precedence over both addition and multiplication and placed as a superscript to the right of ...
The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics. Additionally, the subsequent columns contains an informal explanation, a short example, the Unicode location, the name for use in HTML documents, [ 1 ] and the LaTeX symbol.
In mathematics, theorems are often stated in the form "P is true if and only if Q is true". Because, as explained in previous section, necessity of one for the other is equivalent to sufficiency of the other for the first one, e.g. P ⇐ Q {\displaystyle P\Leftarrow Q} is equivalent to Q ⇒ P {\displaystyle Q\Rightarrow P} , if P is necessary ...
The detailed semantics of "the" ternary operator as well as its syntax differs significantly from language to language. A top level distinction from one language to another is whether the expressions permit side effects (as in most procedural languages) and whether the language provides short-circuit evaluation semantics, whereby only the selected expression is evaluated (most standard ...
The corresponding logical symbols are "", "", [6] and , [10] and sometimes "iff".These are usually treated as equivalent. However, some texts of mathematical logic (particularly those on first-order logic, rather than propositional logic) make a distinction between these, in which the first, ↔, is used as a symbol in logic formulas, while ⇔ is used in reasoning about those logic formulas ...
f = (if p 1 then e 1 else e 2) where the e i are expressions and p 1 is a statement (or equation) that may be true or false. ¶ This expression means See if p 1 is true; if so the value of f is given by e 1. IF p1 is false, the value of f is given by e 2. This conditional expression . . . has also the power of the minimization operator. . ..
On a single-step or immediate-execution calculator, the user presses a key for each operation, calculating all the intermediate results, before the final value is shown. [1] [2] [3] On an expression or formula calculator, one types in an expression and then presses a key, such as "=" or "Enter", to evaluate the expression.