When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.

  3. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    Then multiplying the numerator and denominator inside the square root by (1 + cos θ) and using Pythagorean identities leads to: ⁡ = ⁡ + ⁡. Also, if the numerator and denominator are both multiplied by (1 - cos θ), the result is:

  4. Sine and cosine - Wikipedia

    en.wikipedia.org/wiki/Sine_and_cosine

    According to Pythagorean theorem, the squared hypotenuse is the sum of two squared legs of a right triangle. Dividing the formula on both sides with squared hypotenuse resulting in the Pythagorean trigonometric identity , the sum of a squared sine and a squared cosine equals 1: [ 25 ] [ b ] sin 2 ⁡ ( θ ) + cos 2 ⁡ ( θ ) = 1 ...

  5. Law of cosines - Wikipedia

    en.wikipedia.org/wiki/Law_of_cosines

    Fig. 1 – A triangle. The angles α (or A), β (or B), and γ (or C) are respectively opposite the sides a, b, and c.. In trigonometry, the law of cosines (also known as the cosine formula or cosine rule) relates the lengths of the sides of a triangle to the cosine of one of its angles.

  6. Pythagorean trigonometric identity - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_trigonometric...

    which by the Pythagorean theorem is equal to 1. This definition is valid for all angles, due to the definition of defining x = cos θ and y sin θ for the unit circle and thus x = c cos θ and y = c sin θ for a circle of radius c and reflecting our triangle in the y-axis and setting a = x and b = y.

  7. Euler's identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_identity

    Euler's identity asserts that is equal to −1. The expression e i π {\displaystyle e^{i\pi }} is a special case of the expression e z {\displaystyle e^{z}} , where z is any complex number . In general, e z {\displaystyle e^{z}} is defined for complex z by extending one of the definitions of the exponential function from real exponents to ...

  8. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    Approximately equal behavior of some (trigonometric) functions for x → 0. For small angles, the trigonometric functions sine, cosine, and tangent can be calculated with reasonable accuracy by the following simple approximations:

  9. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    Euler's formula states that, for any real number x, one has = ⁡ + ⁡, where e is the base of the natural logarithm, i is the imaginary unit, and cos and sin are the trigonometric functions cosine and sine respectively. This complex exponential function is sometimes denoted cis x ("cosine plus i sine").