Ad
related to: simplify 49 examples of rational
Search results
Results From The WOW.Com Content Network
For example, one proof notes that if could be represented as a ratio of integers, then it would have in particular the fully reduced representation a / b where a and b are the smallest possible; but given that a / b equals so does 2b − a / a − b (since cross-multiplying this with a / b shows that they are equal).
In mathematics, "rational" is often used as a noun abbreviating "rational number". The adjective rational sometimes means that the coefficients are rational numbers. For example, a rational point is a point with rational coordinates (i.e., a point whose coordinates are rational numbers); a rational matrix is a matrix of rational numbers; a rational polynomial may be a polynomial with rational ...
Examples include e and π. Trigonometric number: Any number that is the sine or cosine of a rational multiple of π. Quadratic surd: A root of a quadratic equation with rational coefficients. Such a number is algebraic and can be expressed as the sum of a rational number and the square root of a rational number.
The set of rational numbers is not complete. For example, the sequence (1; 1.4; 1.41; 1.414; 1.4142; 1.41421; ...), where each term adds a digit of the decimal expansion of the positive square root of 2, is Cauchy but it does not converge to a rational number (in the real numbers, in contrast, it converges to the positive square root of 2).
While the proofs by infinite descent are constructively valid when "irrational" is defined to mean "not rational", we can obtain a constructively stronger statement by using a positive definition of "irrational" as "quantifiably apart from every rational". Let a and b be positive integers such that 1< a / b < 3/2 (as 1<2< 9/4 satisfies ...
For example, the pair (3, 7) represents the rational number . [153] One way to construct the real numbers relies on the concept of Dedekind cuts . According to this approach, each real number is represented by a partition of all rational numbers into two sets, one for all numbers below the represented real number and the other for the rest. [ 154 ]
In the case of two nested square roots, the following theorem completely solves the problem of denesting. [2]If a and c are rational numbers and c is not the square of a rational number, there are two rational numbers x and y such that + = if and only if is the square of a rational number d.
where the second term is a proper rational fraction. The sum of two proper rational fractions is a proper rational fraction as well. The reverse process of expressing a proper rational fraction as the sum of two or more fractions is called resolving it into partial fractions. For example,