Search results
Results From The WOW.Com Content Network
lim sup X n = {0,1} lim inf X n = { } That is, the four elements that do not match the pattern do not affect the lim inf and lim sup because there are only finitely many of them. In fact, these elements could be placed anywhere in the sequence. So long as the tails of the sequence are maintained, the outer and inner limits will be unchanged.
supremum = least upper bound. A lower bound of a subset of a partially ordered set (,) is an element of such that . for all .; A lower bound of is called an infimum (or greatest lower bound, or meet) of if
On one hand, the limit as n approaches infinity of a sequence {a n} is simply the limit at infinity of a function a(n) —defined on the natural numbers {n}. On the other hand, if X is the domain of a function f(x) and if the limit as n approaches infinity of f(x n) is L for every arbitrary sequence of points {x n} in X − x 0 which converges ...
If () = = and () () for all x in an open interval that contains c, except possibly c itself, =. This is known as the squeeze theorem . [ 1 ] [ 2 ] This applies even in the cases that f ( x ) and g ( x ) take on different values at c , or are discontinuous at c .
In mathematics, the limit of a sequence of sets,, … (subsets of a common set ) is a set whose elements are determined by the sequence in either of two equivalent ways: (1) by upper and lower bounds on the sequence that converge monotonically to the same set (analogous to convergence of real-valued sequences) and (2) by convergence of a sequence of indicator functions which are themselves ...
This sequence converges uniformly on S to the zero function and the limit, 0, is reached in a finite number of steps: for every x ≥ 0, if n > x, then f n (x) = 0. However, every function f n has integral −1. Contrary to Fatou's lemma, this value is strictly less than the integral of the limit (0).
If X is the continuous dual space of some other Banach space Y, then X is said to have the weak-∗ Opial property if, whenever (x n) n∈N is a sequence in X converging weakly-∗ to some x 0 ∈ X and x ≠ x 0, it follows that
For every sequence (x n) in X − {p} that converges to p, the sequence f(x n) converges to L. If L is the limit (in the sense above) of f as x approaches p, then it is a sequential limit as well, however the converse need not hold in general.