Search results
Results From The WOW.Com Content Network
In natural language processing, a word embedding is a representation of a word. The embedding is used in text analysis . Typically, the representation is a real-valued vector that encodes the meaning of the word in such a way that the words that are closer in the vector space are expected to be similar in meaning. [ 1 ]
BM25F [5] [2] (or the BM25 model with Extension to Multiple Weighted Fields [6]) is a modification of BM25 in which the document is considered to be composed from several fields (such as headlines, main text, anchor text) with possibly different degrees of importance, term relevance saturation and length normalization.
Font embedding is a controversial practice because it allows copyrighted fonts to be freely distributed. The controversy can be mitigated by only embedding the characters required to view the document (subsetting). This reduces file size but prohibits adding previously unused characters to the document.
Word2vec is a group of related models that are used to produce word embeddings.These models are shallow, two-layer neural networks that are trained to reconstruct linguistic contexts of words.
reStructuredText (RST, ReST, or reST) is a file format for textual data used primarily in the Python programming language community for technical documentation.. It is part of the Docutils project of the Python Doc-SIG (Documentation Special Interest Group), aimed at creating a set of tools for Python similar to Javadoc for Java or Plain Old Documentation (POD) for Perl.
The Transformers library is a Python package that contains open-source implementations of transformer models for text, image, and audio tasks. It is compatible with the PyTorch , TensorFlow and JAX deep learning libraries and includes implementations of models like BERT and GPT-2 . [ 16 ]
In practice however, BERT's sentence embedding with the [CLS] token achieves poor performance, often worse than simply averaging non-contextual word embeddings. SBERT later achieved superior sentence embedding performance [8] by fine tuning BERT's [CLS] token embeddings through the usage of a siamese neural network architecture on the SNLI dataset.
T5 (Text-to-Text Transfer Transformer) is a series of large language models developed by Google AI introduced in 2019. [ 1 ] [ 2 ] Like the original Transformer model, [ 3 ] T5 models are encoder-decoder Transformers , where the encoder processes the input text, and the decoder generates the output text.