Search results
Results From The WOW.Com Content Network
The maximum thermal efficiency of a Diesel cycle is dependent on the compression ratio and the cut-off ratio. It has the following formula under cold air standard analysis: η t h = 1 − 1 r γ − 1 ( α γ − 1 γ ( α − 1 ) ) {\displaystyle \eta _{th}=1-{\frac {1}{r^{\gamma -1}}}\left({\frac {\alpha ^{\gamma }-1}{\gamma (\alpha -1)}}\right)}
In a synchronous generator, [1] the short circuit ratio is the ratio of field current required to produce rated armature voltage at the open circuit to the field current required to produce the rated armature current at short circuit. [1] [2] This ratio can also be expressed as an inverse of the saturated [3] direct-axis synchronous reactance ...
The efficiency of the Diesel cycle is dependent on r and γ like the Otto cycle, and also by the cutoff ratio, r c, which is the ratio of the cylinder volume at the beginning and end of the combustion process: [4] = () The Diesel cycle is less efficient than the Otto cycle when using the same compression ratio.
In an electrical grid, the short circuit ratio (or SCR) is the ratio of: the short circuit apparent power (SCMVA) in the case of a line-line-line-ground (3LG) fault at the location in the grid where some generator is connected, to: the power rating of the generator itself (GMW).
The half-power point is the point at which the output power has dropped to half of its peak value; that is, at a level of approximately −3 dB. [1] [a]In filters, optical filters, and electronic amplifiers, [2] the half-power point is also known as half-power bandwidth and is a commonly used definition for the cutoff frequency.
Alpha cutoff frequency, or is the frequency at which the common base DC current gain drops to 0.707 of its low frequency value. The common base DC current gain is the ratio of a transistor's collector current to the transistor's emitter current , or α = i C i E {\displaystyle \alpha ={\frac {i_{C}}{i_{E}}}} .
The response value of the Gaussian filter at this cut-off frequency equals exp(−0.5) ≈ 0.607. However, it is more common to define the cut-off frequency as the half power point: where the filter response is reduced to 0.5 (−3 dB) in the power spectrum, or 1/ √ 2 ≈ 0.707 in the amplitude spectrum (see e.g. Butterworth filter).
The scaling factor used, , is the stop band to pass band cutoff frequency ratios and is also known as the inverse of the "selectivity factor". [2] Since Elliptic designs are generally specified from the stop band attenuation requirements, Ω c {\displaystyle \Omega _{c}} , may be derived from the equations that establish the minimum order, n ...