Search results
Results From The WOW.Com Content Network
The assembly consists of two molecules that self-attract through electrostatic forces, i.e., one has at least partial negative charge and the partner has partial positive charge, referred to respectively as the electron acceptor and electron donor. In some cases, the degree of charge transfer is "complete", such that the CT complex can be ...
An electron transport chain (ETC [1]) is a series of protein complexes and other molecules which transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples this electron transfer with the transfer of protons (H + ions) across a membrane.
Proper names of oxidoreductases are formed as "donor:acceptor oxidoreductase"; however, other names are much more common. [ citation needed ] The common name is " donor dehydrogenase " when possible, such as glyceraldehyde-3-phosphate dehydrogenase for the second reaction above.
The organic or inorganic substances (e.g., oxygen) used as electron acceptors needed in the catabolic processes of aerobic or anaerobic respiration and fermentation are not taken into account here. For example, plants are lithotrophs because they use water as their electron donor for the electron transport chain across the thylakoid membrane.
The electron donating power of a donor molecule is measured by its ionization potential, which is the energy required to remove an electron from the highest occupied molecular orbital . The overall energy balance (ΔE), i.e., energy gained or lost, in an electron donor-acceptor transfer is determined by the difference between the acceptor's ...
Figure 1 sketches the basic elements of adiabatic electron-transfer theory. Two chemical species (ions, molecules, polymers, protein cofactors, etc.) labelled D (for “donor”) and A (for “acceptor”) become a distance R apart, either through collisions, covalent bonding, location in a material, protein or polymer structure, etc. A and D ...
The chain of redox reactions driving the flow of electrons through the electron transport chain, from electron donors such as NADH to electron acceptors such as oxygen and hydrogen (protons), is an exergonic process – it releases energy, whereas the synthesis of ATP is an endergonic process, which requires an input of energy.
In chemolithotrophs, the compounds – the electron donors – are oxidized in the cell, and the electrons are channeled into respiratory chains, ultimately producing ATP. The electron acceptor can be oxygen (in aerobic bacteria), but a variety of other electron acceptors, organic and inorganic, are also used by various species.