Search results
Results From The WOW.Com Content Network
The fourth central moment is a measure of the heaviness of the tail of the distribution. Since it is the expectation of a fourth power, the fourth central moment, where defined, is always nonnegative; and except for a point distribution, it is always strictly positive. The fourth central moment of a normal distribution is 3σ 4.
Examples of platykurtic distributions include the continuous and discrete uniform distributions, and the raised cosine distribution. The most platykurtic distribution of all is the Bernoulli distribution with p = 1/2 (for example the number of times one obtains "heads" when flipping a coin once, a coin toss), for which the excess kurtosis is −2.
The first central moment μ 1 is 0 (not to be confused with the first raw moment or the expected value μ). The second central moment μ 2 is called the variance, and is usually denoted σ 2, where σ represents the standard deviation. The third and fourth central moments are used to define the standardized moments which are used to define ...
In probability theory and statistics, the Poisson distribution (/ ˈ p w ɑː s ɒ n /) is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. [1]
An example application of the method of moments is to estimate polynomial probability density distributions. In this case, an approximating polynomial of order is defined on an interval [,]. The method of moments then yields a system of equations, whose solution involves the inversion of a Hankel matrix. [2]
Any two probability distributions whose moments are identical will have identical cumulants as well, and vice versa. The first cumulant is the mean, the second cumulant is the variance, and the third cumulant is the same as the third central moment. But fourth and higher-order cumulants are not equal to central moments.
Most simply, they can be estimated in terms of the higher moments, using the method of moments, as in the skewness (3rd moment) or kurtosis (4th moment), if the higher moments are defined and finite. Estimators of shape often involve higher-order statistics (non-linear functions of the data), as in the higher moments, but linear estimators also ...
In probability and statistics, a moment measure is a mathematical quantity, function or, more precisely, measure that is defined in relation to mathematical objects known as point processes, which are types of stochastic processes often used as mathematical models of physical phenomena representable as randomly positioned points in time, space or both.