When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Churchill–Bernstein equation - Wikipedia

    en.wikipedia.org/wiki/Churchill–Bernstein_equation

    The Churchill–Bernstein equation is valid for a wide range of Reynolds numbers and Prandtl numbers, as long as the product of the two is greater than or equal to 0.2, as defined above. The Churchill–Bernstein equation can be used for any object of cylindrical geometry in which boundary layers develop freely, without constraints imposed by ...

  3. Darcy friction factor formulae - Wikipedia

    en.wikipedia.org/wiki/Darcy_friction_factor_formulae

    Churchill equation [24] (1977) is the only equation that can be evaluated for very slow flow (Reynolds number < 1), but the Cheng (2008), [25] and Bellos et al. (2018) [8] equations also return an approximately correct value for friction factor in the laminar flow region (Reynolds number < 2300). All of the others are for transitional and ...

  4. Fanning friction factor - Wikipedia

    en.wikipedia.org/wiki/Fanning_friction_factor

    The Fanning friction factor (named after American engineer John T. Fanning) is a dimensionless number used as a local parameter in continuum mechanics calculations. It is defined as the ratio between the local shear stress and the local flow kinetic energy density: [1] [2]

  5. Turbulent Prandtl number - Wikipedia

    en.wikipedia.org/wiki/Turbulent_Prandtl_number

    The turbulent Prandtl number (Pr t) is a non-dimensional term defined as the ratio between the momentum eddy diffusivity and the heat transfer eddy diffusivity. It is useful for solving the heat transfer problem of turbulent boundary layer flows.

  6. Heat transfer coefficient - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer_coefficient

    The characteristic length is the ratio of the plate surface area to perimeter. If the surface is inclined at an angle θ with the vertical then the equations for a vertical plate by Churchill and Chu may be used for θ up to 60°; if the boundary layer flow is laminar, the gravitational constant g is replaced with g cos θ when calculating the ...

  7. Law of the wall - Wikipedia

    en.wikipedia.org/wiki/Law_of_the_wall

    law of the wall, horizontal velocity near the wall with mixing length model. In fluid dynamics, the law of the wall (also known as the logarithmic law of the wall) states that the average velocity of a turbulent flow at a certain point is proportional to the logarithm of the distance from that point to the "wall", or the boundary of the fluid region.

  8. What happens to HELOCs if home values fall? - AOL

    www.aol.com/finance/happens-helocs-home-values...

    ($400,000 x 0.9) – $200,000 = $160,000. Of course, you don’t have to take the entire amount at once. Often, borrowers use a HELOC as they do a credit card: They tap some of their credit line ...

  9. Moody chart - Wikipedia

    en.wikipedia.org/wiki/Moody_chart

    In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe.