Search results
Results From The WOW.Com Content Network
Normality can be used for acid-base titrations. For example, sulfuric acid (H 2 SO 4) is a diprotic acid. Since only 0.5 mol of H 2 SO 4 are needed to neutralize 1 mol of OH −, the equivalence factor is: f eq (H 2 SO 4) = 0.5. If the concentration of a sulfuric acid solution is c(H 2 SO 4) = 1 mol/L, then its normality is 2 N. It can also be ...
Example Bjerrum plot: Change in carbonate system of seawater from ocean acidification.. A Bjerrum plot (named after Niels Bjerrum), sometimes also known as a Sillén diagram (after Lars Gunnar Sillén), or a Hägg diagram (after Gunnar Hägg) [1] is a graph of the concentrations of the different species of a polyprotic acid in a solution, as a function of pH, [2] when the solution is at ...
In biochemistry, steady state refers to the maintenance of constant internal concentrations of molecules and ions in the cells and organs of living systems. [1] Living organisms remain at a dynamic steady state where their internal composition at both cellular and gross levels are relatively constant, but different from equilibrium concentrations. [1]
When a solution of an acid, HA, is at equilibrium, by definition the concentrations are related by the expression [A −][H +] = K a [HA]; pK a = −log K a. The solvent (e.g. water) is omitted from the defining expression on the assumption that its concentration is very much greater than the concentration of dissolved acid, [H 2 O] ≫ T A ...
An example of an alkalimetric titration involving a strong acid is as follows: H 2 SO 4 + 2 OH − → SO 4 2-+ 2 H 2 O. In this case, the strong acid (H 2 SO 4) is neutralized by the base until all of the acid has reacted. This allows the viewer to calculate the concentration of the acid from the volume of the standard base that is used.
Acid–base homeostasis is the homeostatic regulation of the pH of the body's extracellular fluid (ECF). [1] The proper balance between the acids and bases (i.e. the pH) in the ECF is crucial for the normal physiology of the body—and for cellular metabolism. [1]
Physiologically normal intracellular pH is most commonly between 7.0 and 7.4, though there is variability between tissues (e.g., mammalian skeletal muscle tends to have a pH i of 6.8–7.1). [4] [5] There is also pH variation across different organelles, which can span from around 4.5 to 8.0. [6] [7] pH i can be measured in a number of ...
The blank solution should be the same pH and of a similar ionic strength as the sample solution. Example: using water for the blank measurement for samples dissolved in TE may result in low 260/230 ratios. A260/A280 Residual phenol or other reagent associated with the extraction protocol. A very low concentration (< 10 ng/μL) of nucleic acid.