When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Orthogonal coordinates - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_coordinates

    For example, the three-dimensional Cartesian coordinates (x, y, z) is an orthogonal coordinate system, since its coordinate surfaces x = constant, y = constant, and z = constant are planes that meet at right angles to one another, i.e., are perpendicular. Orthogonal coordinates are a special but extremely common case of curvilinear coordinates.

  3. Orthonormality - Wikipedia

    en.wikipedia.org/wiki/Orthonormality

    A unit vector means that the vector has a length of 1, which is also known as normalized. Orthogonal means that the vectors are all perpendicular to each other. A set of vectors form an orthonormal set if all vectors in the set are mutually orthogonal and all of unit length.

  4. Skew coordinates - Wikipedia

    en.wikipedia.org/wiki/Skew_coordinates

    The simplest 3D case of a skew coordinate system is a Cartesian one where one of the axes (say the x axis) has been bent by some angle , staying orthogonal to one of the remaining two axes. For this example, the x axis of a Cartesian coordinate has been bent toward the z axis by , remaining orthogonal to the y axis.

  5. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    If we condense the skew entries into a vector, (x,y,z), then we produce a 90° rotation around the x-axis for (1, 0, 0), around the y-axis for (0, 1, 0), and around the z-axis for (0, 0, 1). The 180° rotations are just out of reach; for, in the limit as x → ∞ , ( x , 0, 0) does approach a 180° rotation around the x axis, and similarly for ...

  6. Orthogonality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Orthogonality_(mathematics)

    Without loss of generality, we may take these to be the axes and orthogonal central planes of a (,,,) Cartesian coordinate system. In 4 dimensions we have the same 3 orthogonal planes ( x y , x z , y z ) {\displaystyle (xy,xz,yz)} that we have in 3 dimensions, and also 3 others ( w x , w y , w z ) {\displaystyle (wx,wy,wz)} .

  7. Vector projection - Wikipedia

    en.wikipedia.org/wiki/Vector_projection

    Thus, the vector is parallel to , the vector is orthogonal to , and = +. The projection of a onto b can be decomposed into a direction and a scalar magnitude by writing it as a 1 = a 1 b ^ {\displaystyle \mathbf {a} _{1}=a_{1}\mathbf {\hat {b}} } where a 1 {\displaystyle a_{1}} is a scalar, called the scalar projection of a onto b , and b̂ is ...

  8. Gram–Schmidt process - Wikipedia

    en.wikipedia.org/wiki/Gram–Schmidt_process

    The first two steps of the Gram–Schmidt process. In mathematics, particularly linear algebra and numerical analysis, the Gram–Schmidt process or Gram-Schmidt algorithm is a way of finding a set of two or more vectors that are perpendicular to each other.

  9. Projection (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Projection_(linear_algebra)

    A square matrix is called a projection matrix if it is equal to its square, i.e. if =. [2]: p. 38 A square matrix is called an orthogonal projection matrix if = = for a real matrix, and respectively = = for a complex matrix, where denotes the transpose of and denotes the adjoint or Hermitian transpose of .