When.com Web Search

  1. Ad

    related to: gradient descent machine learning formula pdf download full novel page

Search results

  1. Results From The WOW.Com Content Network
  2. Delta rule - Wikipedia

    en.wikipedia.org/wiki/Delta_rule

    Download as PDF; Printable version; ... In machine learning, ... gradient descent tells us that our change for each weight should be proportional to the gradient.

  3. Gradient descent - Wikipedia

    en.wikipedia.org/wiki/Gradient_descent

    Gradient descent with momentum remembers the solution update at each iteration, and determines the next update as a linear combination of the gradient and the previous update. For unconstrained quadratic minimization, a theoretical convergence rate bound of the heavy ball method is asymptotically the same as that for the optimal conjugate ...

  4. Stochastic gradient descent - Wikipedia

    en.wikipedia.org/wiki/Stochastic_gradient_descent

    Stochastic gradient descent competes with the L-BFGS algorithm, [citation needed] which is also widely used. Stochastic gradient descent has been used since at least 1960 for training linear regression models, originally under the name ADALINE. [25] Another stochastic gradient descent algorithm is the least mean squares (LMS) adaptive filter.

  5. Mathematics of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_artificial...

    Multiply the weight's output delta and input activation to find the gradient of the weight. Subtract the ratio (percentage) of the weight's gradient from the weight. The learning rate is the ratio (percentage) that influences the speed and quality of learning. The greater the ratio, the faster the neuron trains, but the lower the ratio, the ...

  6. Least mean squares filter - Wikipedia

    en.wikipedia.org/wiki/Least_mean_squares_filter

    If is chosen to be large, the amount with which the weights change depends heavily on the gradient estimate, and so the weights may change by a large value so that gradient which was negative at the first instant may now become positive. And at the second instant, the weight may change in the opposite direction by a large amount because of the ...

  7. Gradient method - Wikipedia

    en.wikipedia.org/wiki/Gradient_method

    In optimization, a gradient method is an algorithm to solve problems of the form min x ∈ R n f ( x ) {\displaystyle \min _{x\in \mathbb {R} ^{n}}\;f(x)} with the search directions defined by the gradient of the function at the current point.

  8. Backtracking line search - Wikipedia

    en.wikipedia.org/wiki/Backtracking_line_search

    Another way is the so-called adaptive standard GD or SGD, some representatives are Adam, Adadelta, RMSProp and so on, see the article on Stochastic gradient descent. In adaptive standard GD or SGD, learning rates are allowed to vary at each iterate step n, but in a different manner from Backtracking line search for gradient descent.

  9. Barzilai-Borwein method - Wikipedia

    en.wikipedia.org/wiki/Barzilai-Borwein_method

    The Barzilai-Borwein method [1] is an iterative gradient descent method for unconstrained optimization using either of two step sizes derived from the linear trend of the most recent two iterates. This method, and modifications, are globally convergent under mild conditions, [ 2 ] [ 3 ] and perform competitively with conjugate gradient methods ...