Search results
Results From The WOW.Com Content Network
The area of a polygon can be calculated from individual quadrangles of the above type, from (analogously) individual triangle bounded by a segment of the polygon and two meridians, [15] by a line integral with Green's theorem, [16] or via an equal-area projection as commonly done in GIS.
Lines of constant bearing (rhumb lines) are straight, aiding navigation. Areas inflate with latitude, becoming so extreme that the map cannot show the poles. 2005 Web Mercator: Cylindrical Compromise Google: Variant of Mercator that ignores Earth's ellipticity for fast calculation, and clips latitudes to ~85.05° for square presentation. De ...
Solution of triangles (Latin: solutio triangulorum) is the main trigonometric problem of finding the characteristics of a triangle (angles and lengths of sides), when some of these are known. The triangle can be located on a plane or on a sphere. Applications requiring triangle solutions include geodesy, astronomy, construction, and navigation.
The area of a triangle can be demonstrated, for example by means of the congruence of triangles, as half of the area of a parallelogram that has the same base length and height. A graphic derivation of the formula T = h 2 b {\displaystyle T={\frac {h}{2}}b} that avoids the usual procedure of doubling the area of the triangle and then halving it.
It is possible to reduce the various geodesic problems into one of two types. Consider two points: A at latitude φ 1 and longitude λ 1 and B at latitude φ 2 and longitude λ 2 (see Fig. 1). The connecting geodesic (from A to B) is AB, of length s 12, which has azimuths α 1 and α 2 at the two endpoints. [1]
Geodetic latitude and geocentric latitude have different definitions. Geodetic latitude is defined as the angle between the equatorial plane and the surface normal at a point on the ellipsoid, whereas geocentric latitude is defined as the angle between the equatorial plane and a radial line connecting the centre of the ellipsoid to a point on the surface (see figure).
Equirectangular projection of the world; the standard parallel is the equator (plate carrée projection). Equirectangular projection with Tissot's indicatrix of deformation and with the standard parallels lying on the equator True-colour satellite image of Earth in equirectangular projection Height map of planet Earth at 2km per pixel, including oceanic bathymetry information, normalized as 8 ...
In mathematics, a spherical coordinate system specifies a given point in three-dimensional space by using a distance and two angles as its three coordinates. These are the radial distance r along the line connecting the point to a fixed point called the origin; the polar angle θ between this radial line and a given polar axis; [a] and