When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Legendre polynomials - Wikipedia

    en.wikipedia.org/wiki/Legendre_polynomials

    In mathematics, Legendre polynomials, named after Adrien-Marie Legendre (1782), are a system of complete and orthogonal polynomials with a wide number of mathematical properties and numerous applications. They can be defined in many ways, and the various definitions highlight different aspects as well as suggest generalizations and connections ...

  3. Legendre function - Wikipedia

    en.wikipedia.org/wiki/Legendre_function

    The general Legendre equation reads ″ ′ + [(+)] =, where the numbers λ and μ may be complex, and are called the degree and order of the relevant function, respectively. . The polynomial solutions when λ is an integer (denoted n), and μ = 0 are the Legendre polynomials P n; and when λ is an integer (denoted n), and μ = m is also an integer with | m | < n are the associated Legendre ...

  4. Associated Legendre polynomials - Wikipedia

    en.wikipedia.org/.../Associated_Legendre_polynomials

    The Legendre ordinary differential equation is frequently encountered in physics and other technical fields. In particular, it occurs when solving Laplace's equation (and related partial differential equations) in spherical coordinates. Associated Legendre polynomials play a vital role in the definition of spherical harmonics.

  5. Rodrigues' formula - Wikipedia

    en.wikipedia.org/wiki/Rodrigues'_formula

    The following proof shows that the polynomials obtained from the Rodrigues' formula obey the second order differential equation just given. This proof repeatedly uses the fact that the second derivative of B(x) and the first derivative of A(x) are constants.

  6. Legendre wavelet - Wikipedia

    en.wikipedia.org/wiki/Legendre_wavelet

    Associated Legendre polynomials are the colatitudinal part of the spherical harmonics which are common to all separations of Laplace's equation in spherical polar coordinates. [2] The radial part of the solution varies from one potential to another, but the harmonics are always the same and are a consequence of spherical symmetry.

  7. Classical orthogonal polynomials - Wikipedia

    en.wikipedia.org/wiki/Classical_orthogonal...

    Classical orthogonal polynomials appeared in the early 19th century in the works of Adrien-Marie Legendre, who introduced the Legendre polynomials. In the late 19th century, the study of continued fractions to solve the moment problem by P. L. Chebyshev and then A.A. Markov and T.J. Stieltjes led to the general notion of orthogonal polynomials.

  8. Gauss–Legendre method - Wikipedia

    en.wikipedia.org/wiki/Gauss–Legendre_method

    More specifically, they are collocation methods based on the points of Gauss–Legendre quadrature. The Gauss–Legendre method based on s points has order 2s. [1] All Gauss–Legendre methods are A-stable. [2] The Gauss–Legendre method of order two is the implicit midpoint rule. Its Butcher tableau is:

  9. Magic angle - Wikipedia

    en.wikipedia.org/wiki/Magic_angle

    The magic angle is a precisely defined angle, the value of which is approximately 54.7356°. The magic angle is a root of a second-order Legendre polynomial, P 2 (cos θ) = 0, and so any interaction which depends on this second-order Legendre polynomial vanishes at the magic angle.