Search results
Results From The WOW.Com Content Network
Flip-flop excitation tables [ edit ] In order to complete the excitation table of a flip-flop , one needs to draw the Q(t) and Q(t + 1) for all possible cases (e.g., 00, 01, 10, and 11), and then make the value of flip-flop such that on giving this value, one shall receive the input as Q(t + 1) as desired.
The number of flip-flops being cascaded is referred to as the "ranking"; "dual-ranked" flip flops (two flip-flops in series) is a common situation. So-called metastable-hardened flip-flops are available, which work by reducing the setup and hold times as much as possible, but even these cannot eliminate the problem entirely.
At each advance, the bit on the far left (i.e. "data in") is shifted into the first flip-flop's output. The bit on the far right (i.e. "data out") is shifted out and lost. The data is stored after each flip-flop on the "Q" output, so there are four storage "slots" available in this arrangement, hence it is a 4-bit register.
Here, the contamination delay is the amount of time needed for a change in the flip-flop clock input to result in the initial change at the flip-flop output (Q). If there is insufficient delay from the output of the first flip-flop to the input of the second, the input may change before the hold time has passed. Because the second flip-flop is ...
A clock domain is defined as a group of flip-flops with a common clock. Such architectures can form a circuit guaranteed free of metastability (below a certain maximum clock frequency, above which first metastability, then outright failure occur), assuming a low-skew common clock. However, even then, if the system has a dependence on any ...
In the state-transition table, all possible inputs to the finite-state machine are enumerated across the columns of the table, while all possible states are enumerated across the rows. If the machine is in the state S 1 (the first row) and receives an input of 1 (second column), the machine will stay in the state S 1 .
9-bit D flip-flops, clear and set inputs three-state 24 SN74ALS843: 74x844 1 9-bit D flip-flops, clear and set inputs, inverting inputs three-state 24 SN74ALS844: 74x845 1 8-bit D flip-flops, clear and set inputs three-state 24 SN74ALS845: 74x846 1 8-bit D flip-flops, clear and set inputs, inverting inputs three-state 24 SN74ALS846: 74x848 1
The clock signal must be distributed to every flip-flop in the circuit. As the clock is usually a high-frequency signal, this distribution consumes a relatively large amount of power and dissipates much heat. Even the flip-flops that are doing nothing consume a small amount of power, thereby generating waste heat in the chip. In battery-powered ...