When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Coprime integers - Wikipedia

    en.wikipedia.org/wiki/Coprime_integers

    In number theory, two integers a and b are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. [1] Consequently, any prime number that divides a does not divide b, and vice versa. This is equivalent to their greatest common divisor (GCD) being 1. [2] One says also a is prime to b or a ...

  3. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    Integers in the same congruence class a ≡ b (mod n) satisfy gcd(a, n) = gcd(b, n); hence one is coprime to n if and only if the other is. Thus the notion of congruence classes modulo n that are coprime to n is well-defined. Since gcd(a, n) = 1 and gcd(b, n) = 1 implies gcd(ab, n) = 1, the set of classes coprime to n is closed under ...

  4. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    m and n are coprime (also called relatively prime) if gcd(m, n) = 1 (meaning they have no common prime factor). lcm(m, n) (least common multiple of m and n) is the product of all prime factors of m or n (with the largest multiplicity for m or n). gcd(m, n) × lcm(m, n) = m × n. Finding the prime factors is often harder than computing gcd and ...

  5. Euler's totient function - Wikipedia

    en.wikipedia.org/wiki/Euler's_totient_function

    Euler's totient function is a multiplicative function, meaning that if two numbers m and n are relatively prime, then φ(mn) = φ(m)φ(n). [ 4 ] [ 5 ] This function gives the order of the multiplicative group of integers modulo n (the group of units of the ring Z / n Z {\displaystyle \mathbb {Z} /n\mathbb {Z} } ). [ 6 ]

  6. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    Two numbers are called relatively prime, or coprime, if their greatest common divisor equals 1. [14] For example, 9 and 28 are coprime. A geometric view.

  7. Primes in arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Primes_in_arithmetic...

    For example, the AP-3 {3, 7, 11} does not qualify, because 5 is also a prime. For an integer k ≥ 3, a CPAP-k is k consecutive primes in arithmetic progression. It is conjectured there are arbitrarily long CPAP's. This would imply infinitely many CPAP-k for all k. The middle prime in a CPAP-3 is called a balanced prime.

  8. Glossary of number theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_number_theory

    Let p is an odd prime and a is an integer not divisible by p. Euler's criterion provides a slick way to determine whether a is a quadratic residue mod p . It says that a p − 1 2 {\displaystyle a^{\tfrac {p-1}{2}}} is congruent to 1 mod p if a is a quadratic residue mod p and is congruent to -1 mod p if not.

  9. Euler's theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_theorem

    In 1736, Leonhard Euler published a proof of Fermat's little theorem [1] (stated by Fermat without proof), which is the restriction of Euler's theorem to the case where n is a prime number. Subsequently, Euler presented other proofs of the theorem, culminating with his paper of 1763, in which he proved a generalization to the case where n is ...