Search results
Results From The WOW.Com Content Network
Many properties of a natural number n can be seen or directly computed from the prime factorization of n.. The multiplicity of a prime factor p of n is the largest exponent m for which p m divides n.
35 has two prime factors, (5 and 7) which also form its main factor pair (5 x 7) and comprise the second twin-prime distinct semiprime pair. The aliquot sum of 35 is 13, within an aliquot sequence of only one composite number (35,13,1,0) to the Prime in the 13-aliquot tree. 35 is the second composite number with the aliquot sum 13; the first ...
d() is the number of positive divisors of n, including 1 and n itself; σ() is the sum of the positive divisors of n, including 1 and n itselfs() is the sum of the proper divisors of n, including 1 but not n itself; that is, s(n) = σ(n) − n
A pentatope number is a number in the fifth cell of any row of Pascal's triangle starting with the five-term row 1 4 6 4 1 . The sum of the reciprocals of the pentatope numbers is 4 / 3 . Sylvester's sequence is an integer sequence in which each member of the sequence is the product of the previous members, plus one. The first few terms ...
For example, 6 and 35 factor as 6 = 2 × 3 and 35 = 5 × 7, so they are not prime, but their prime factors are different, so 6 and 35 are coprime, with no common factors other than 1. A 24×60 rectangle is covered with ten 12×12 square tiles, where 12 is the GCD of 24 and 60.
999 = 3 3 ×37, 1000 = 2 3 ×5 3, 1001 = 7×11×13. Factors p 0 = 1 may be inserted without changing the value of n (for example, 1000 = 2 3 ×3 0 ×5 3). In fact, any positive integer can be uniquely represented as an infinite product taken over all the positive prime numbers, as
where n > 1 is an integer and p, q, r are prime numbers, then 2 n × p × q and 2 n × r are a pair of amicable numbers. This formula gives the pairs (220, 284) for n = 2, (17296, 18416) for n = 4, and (9363584, 9437056) for n = 7, but no other such pairs are known. Numbers of the form 3 × 2 n − 1 are known as Thabit numbers.
Prime numbers have exactly 2 divisors, and highly composite numbers are in bold. 7 is a divisor of 42 because =, so we can say It can also be said that 42 is divisible by 7, 42 is a multiple of 7, 7 divides 42, or 7 is a factor of 42. The non-trivial divisors of 6 are 2, −2, 3, −3.