Ads
related to: ordinal numbers beyond 3 pdf worksheets
Search results
Results From The WOW.Com Content Network
Ordinal indicator – Character(s) following an ordinal number (used when writing ordinal numbers, such as a super-script) Ordinal number – Generalization of "n-th" to infinite cases (the related, but more formal and abstract, usage in mathematics) Ordinal data, in statistics; Ordinal date – Date written as number of days since first day of ...
In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, n th, etc.) aimed to extend enumeration to infinite sets. [ 1 ] A finite set can be enumerated by successively labeling each element with the least natural number that has not been previously used.
Such a number is algebraic and can be expressed as the sum of a rational number and the square root of a rational number. Constructible number: A number representing a length that can be constructed using a compass and straightedge. Constructible numbers form a subfield of the field of algebraic numbers, and include the quadratic surds.
In the mathematical field of set theory, ordinal arithmetic describes the three usual operations on ordinal numbers: addition, multiplication, and exponentiation. Each can be defined in essentially two different ways: either by constructing an explicit well-ordered set that represents the result of the operation or by using transfinite recursion .
The ordinal category are based on ordinal numbers such as the English first, second, third, which specify position of items in a sequence. In Latin and Greek, the ordinal forms are also used for fractions for amounts higher than 2; only the fraction 1 / 2 has special forms.
Any finite natural number can be used in at least two ways: as an ordinal and as a cardinal. Cardinal numbers specify the size of sets (e.g., a bag of five marbles), whereas ordinal numbers specify the order of a member within an ordered set [9] (e.g., "the third man from the left" or "the twenty-seventh day of January").
The first ordinal number that is not a natural number is expressed as ω; this is also the ordinal number of the set of natural numbers itself. The least ordinal of cardinality ℵ 0 (that is, the initial ordinal of ℵ 0) is ω but many well-ordered sets with cardinal number ℵ 0 have an ordinal number greater than ω.
Computable ordinals (or recursive ordinals) are certain countable ordinals: loosely speaking those represented by a computable function.There are several equivalent definitions of this: the simplest is to say that a computable ordinal is the order-type of some recursive (i.e., computable) well-ordering of the natural numbers; so, essentially, an ordinal is recursive when we can present the set ...