Search results
Results From The WOW.Com Content Network
The elongation and membrane targeting stages of eukaryotic translation. The ribosome is green and yellow, the tRNAs are dark-blue, and the other proteins involved are light-blue. Elongation depends on eukaryotic elongation factors. At the end of the initiation step, the mRNA is positioned so that the next codon can be translated during the ...
The elongation phase starts once assembly of the elongation complex has been completed, and progresses until a termination sequence is encountered. [1] The post-initiation movement of RNA polymerase is the target of another class of important regulatory mechanisms.
eIF4G is a 175.5-kDa scaffolding protein that interacts with eIF3 and the Poly(A)-binding protein (PABP), as well as the other members of the eIF4F complex. eIF4E recognizes and binds to the 5' cap structure of mRNA, while eIF4G binds PABP, which binds the poly(A) tail, potentially circularizing and activating the bound mRNA. eIF4A – a DEAD ...
EF-G (elongation factor G, historically known as translocase) is a prokaryotic elongation factor involved in mRNA translation. As a GTPase , EF-G catalyzes the movement (translocation) of transfer RNA (tRNA) and messenger RNA (mRNA) through the ribosome .
Rho-dependent termination: ρ factor (rho factor) is a terminator protein that attaches to the RNA strand and follows behind the polymerase during elongation. [5] Once the polymerase nears the end of the gene it is transcribing, it encounters a series of G nucleotides which causes it to stall. [ 1 ]
The 5' cap is added to the 5' end of the pre-mRNA molecule and is composed of a guanine nucleotide modified through methylation. The purpose of the 5' cap is to prevent break down of mature mRNA molecules before translation, the cap also aids binding of the ribosome to the mRNA to start translation [ 8 ] and enables mRNA to be differentiated ...
The elongation factor EF-Tu has been shown to stabilize the bond by preventing weak acyl linkages from being hydrolyzed. [ 12 ] All together, the actual stability of the ester bond influences the susceptibility of the aa-tRNA to hydrolysis within the body at physiological pH and ion concentrations.
AP Biology/Genes and How They Work; Proteomics/Protein Primary Structure/Genetic Code; An Introduction to Molecular Biology/Transcription of RNA and its modification; Principles of Biochemistry/Cell Metabolism II: RNA transcription; Usage on et.wikipedia.org Transkriptsioon (geneetika) Usage on eu.wikipedia.org Transkripzio (genetika)