Search results
Results From The WOW.Com Content Network
Multi-wavelength anomalous diffraction (sometimes Multi-wavelength anomalous dispersion; abbreviated MAD) is a technique used in X-ray crystallography that facilitates the determination of the three-dimensional structure of biological macromolecules (e.g. DNA, drug receptors) via solution of the phase problem.
Gas electron diffraction (GED) is one of the applications of electron diffraction techniques. [1] The target of this method is the determination of the structure of gaseous molecules, i.e., the geometrical arrangement of the atoms from which a molecule is built up. GED is one of two experimental methods (besides microwave spectroscopy) to ...
Multiple scattering theory (MST) is the mathematical formalism that is used to describe the propagation of a wave through a collection of scatterers. Examples are acoustical waves traveling through porous media, light scattering from water droplets in a cloud, or x-rays scattering from a crystal.
For example, multi-wavelength anomalous dispersion phasing requires that the scattering be recorded at least three (and usually four, for redundancy) wavelengths of the incoming X-ray radiation. A single crystal may degrade too much during the collection of one data set, owing to radiation damage; in such cases, data sets on multiple crystals ...
The coefficient of (1 − cos θ) is known as the Compton wavelength, but is in fact a proportionality constant for the wavelength shift. [31] The collision causes the photon wavelength to increase by somewhere between 0 (for a scattering angle of 0°) and twice the Compton wavelength (for a scattering angle of 180°). [32]
In Thomson scattering light interacts with electrons (this is the low-energy limit of Compton scattering). [3] In Rayleigh scattering a medium composed of particles whose sizes are much smaller than the wavelength scatters light sideways. In this scattering process, the energy (and therefore the wavelength) of the incident light is conserved ...
When combined with basic optical spectrometers such as prisms or diffraction gratings and automated, ground-based observation platforms, it presents a cheap and powerful means for the measurement of trace gas species such as ozone and nitrogen dioxide.
The glancing angle θ (see figure on the right, and note that this differs from the convention in Snell's law where θ is measured from the surface normal), the wavelength λ, and the "grating constant" d of the crystal are connected by the relation: [11]: 1026 = where is the diffraction order (= is first order, = is second order, [10]: 221 ...