Search results
Results From The WOW.Com Content Network
In physics, mean free path is the average distance over which a moving particle (such as an atom, a molecule, or a photon) travels before substantially changing its direction or energy (or, in a specific context, other properties), typically as a result of one or more successive collisions with other particles.
Beyond its application to distance comparison, squared Euclidean distance is of central importance in statistics, where it is used in the method of least squares, a standard method of fitting statistical estimates to data by minimizing the average of the squared distances between observed and estimated values, [17] and as the simplest form of ...
Mean inter-particle distance (or mean inter-particle separation) is the mean distance between microscopic particles (usually atoms or molecules) in a macroscopic body.
A metric on a set X is a function (called the distance function or simply distance) d : X × X → R + (where R + is the set of non-negative real numbers). For all x, y, z in X, this function is required to satisfy the following conditions: d(x, y) ≥ 0 (non-negativity) d(x, y) = 0 if and only if x = y (identity of indiscernibles.
From the kinetic energy formula it can be shown that = ... In kinetic theory of gases, the mean free path is the average distance traveled by a molecule, ...
The mean absolute deviation (MAD), also referred to as the "mean deviation" or sometimes "average absolute deviation", is the mean of the data's absolute deviations around the data's mean: the average (absolute) distance from the mean. "Average absolute deviation" can refer to either this usage, or to the general form with respect to a ...
In bioinformatics, the root mean square deviation of atomic positions is the measure of the average distance between the atoms of superimposed proteins. In structure based drug design, the RMSD is a measure of the difference between a crystal conformation of the ligand conformation and a docking prediction.
The normalized angle, referred to as angular distance, between any two vectors and is a formal distance metric and can be calculated from the cosine similarity. [5] The complement of the angular distance metric can then be used to define angular similarity function bounded between 0 and 1, inclusive.