Ads
related to: magnetic field of toroid formula physics equation calculator math solver
Search results
Results From The WOW.Com Content Network
In electromagnetism, a toroidal moment is an independent term in the multipole expansion of electromagnetic fields besides magnetic and electric multipoles. In the electrostatic multipole expansion, all charge and current distributions can be expanded into a complete set of electric and magnetic multipole coefficients. However, additional terms ...
These equations can be simplified by taking advantage of the fact that the electric and magnetic fields are physically meaningful quantities that can be measured; the potentials are not. There is a freedom to constrain the form of the potentials provided that this does not affect the resultant electric and magnetic fields, called gauge freedom.
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
A toroid using a square. A torus is a type of toroid. A useful device that can produce a magnetic field is a toroid , which we can describe as a solenoid bent into the shape of a doughnut. [1] In mathematics, a toroid is a surface of revolution with a hole in the middle.
In vector calculus, a topic in pure and applied mathematics, a poloidal–toroidal decomposition is a restricted form of the Helmholtz decomposition. It is often used in the spherical coordinates analysis of solenoidal vector fields, for example, magnetic fields and incompressible fluids. [1]
In the electric and magnetic field formulation there are four equations that determine the fields for given charge and current distribution. A separate law of nature, the Lorentz force law, describes how the electric and magnetic fields act on charged particles and currents. By convention, a version of this law in the original equations by ...
As a simple example from the physics of magnetically confined plasmas, consider an axisymmetric system with circular, concentric magnetic flux surfaces of radius (a crude approximation to the magnetic field geometry in an early tokamak but topologically equivalent to any toroidal magnetic confinement system with nested flux surfaces) and denote the toroidal angle by and the poloidal angle by .
In physics, the magnetomotive force (abbreviated mmf or MMF, symbol ) is a quantity appearing in the equation for the magnetic flux in a magnetic circuit, Hopkinson's law. [1] It is the property of certain substances or phenomena that give rise to magnetic fields : F = Φ R , {\displaystyle {\mathcal {F}}=\Phi {\mathcal {R}},} where Φ is the ...