Search results
Results From The WOW.Com Content Network
An optical beam smoke detector is a device that uses a projected beam of light to detect smoke across large areas, [1] typically as an indicator of fire. [2] They are used to detect fires in buildings where standard point smoke detectors would either be uneconomical [ 3 ] or restricted for use by the height of the building.
In the 1860s, Tyndall did a number of experiments with light, shining beams through various gases and liquids and recording the results. In doing so, Tyndall discovered that when gradually filling the tube with smoke and then shining a beam of light through it, the beam appeared to be blue from the sides of the tube but red from the far end. [3]
Most important among them is a collimated or focused light beam (usually from a laser source producing a collimated beam of monochromatic light) that illuminates a region of the sample. In modern instruments, the beam is generally plane-polarized perpendicular to the plane of measurement, though other polarizations may be used especially when ...
The first spectrographs used photographic paper as the detector. The plant pigment phytochrome was discovered using a spectrograph that used living plants as the detector. More recent spectrographs use electronic detectors, such as CCDs which can be used for both visible and UV light. The exact choice of detector depends on the wavelengths of ...
Once the ion beam has ionized target sample atoms, the sample ions are recoiled toward the detector. The beam ions are scattered at an angle that does not permit them to reach the detector. The sample ions pass through an entrance window of the detector, and depending on the type of detector used, the signal is converted into a spectrum.
The main components of an XPS system are the source of X-rays, an ultra-high vacuum (UHV) chamber with mu-metal magnetic shielding, an electron collection lens, an electron energy analyzer, an electron detector system, a sample introduction chamber, sample mounts, a sample stage with the ability to heat or cool the sample, and a set of stage ...
The configuration of the ion beam apparatus can be changed and made more complex with the incorporation of additional components. The techniques for ion beam analysis are designed for specific purposes. Some techniques and ion sources are shown in table 1. Detector types and arrangements for ion beam techniques are shown in table 2.
Typical X-ray detectors for electron microscopes cover only a small solid angle, which makes X-ray detection relatively inefficient since X-rays are emitted from the sample in every direction. However, detectors covering large solid angles have been recently developed, [ 27 ] and atomic resolution X-ray mapping has even been achieved.