When.com Web Search

  1. Ad

    related to: solve 2 equations with unknowns 7 4 and 8 times table quiz

Search results

  1. Results From The WOW.Com Content Network
  2. Equation solving - Wikipedia

    en.wikipedia.org/wiki/Equation_solving

    However, if one searches for real solutions, there are two solutions, √ 2 and – √ 2; in other words, the solution set is {√ 2, − √ 2}. When an equation contains several unknowns, and when one has several equations with more unknowns than equations, the solution set is often infinite. In this case, the solutions cannot be listed.

  3. Equating coefficients - Wikipedia

    en.wikipedia.org/wiki/Equating_coefficients

    The unique pair of values a, b satisfying the first two equations is (a, b) = (1, 1); since these values also satisfy the third equation, there do in fact exist a, b such that a times the original first equation plus b times the original second equation equals the original third equation; we conclude that the third equation is linearly ...

  4. Elementary algebra - Wikipedia

    en.wikipedia.org/wiki/Elementary_algebra

    That cannot be worked out by itself. If the son's age was made known, then there would no longer be two unknowns (variables). The problem then becomes a linear equation with just one variable, that can be solved as described above. To solve a linear equation with two variables (unknowns), requires two related equations.

  5. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    For example, to solve a system of n equations for n unknowns by performing row operations on the matrix until it is in echelon form, and then solving for each unknown in reverse order, requires n(n + 1)/2 divisions, (2n 3 + 3n 2 − 5n)/6 multiplications, and (2n 3 + 3n 2 − 5n)/6 subtractions, [10] for a total of approximately 2n 3 /3 operations.

  6. Cramer's rule - Wikipedia

    en.wikipedia.org/wiki/Cramer's_rule

    [4] [5] [6] Cramer's rule, implemented in a naive way, is computationally inefficient for systems of more than two or three equations. [7] In the case of n equations in n unknowns, it requires computation of n + 1 determinants, while Gaussian elimination produces the result with the same computational complexity as the computation of a single ...

  7. Jade Mirror of the Four Unknowns - Wikipedia

    en.wikipedia.org/wiki/Jade_Mirror_of_the_Four...

    Illustrations in Jade Mirror of the Four Unknowns Jia Xian triangle. Jade Mirror of the Four Unknowns, [1] Siyuan yujian (simplified Chinese: 四元玉鉴; traditional Chinese: 四元玉鑒), also referred to as Jade Mirror of the Four Origins, [2] is a 1303 mathematical monograph by Yuan dynasty mathematician Zhu Shijie. [3]

  8. Hilbert's tenth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_tenth_problem

    Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm that, for any given Diophantine equation (a polynomial equation with integer coefficients and a finite number of unknowns), can decide whether the equation has a solution with all unknowns taking integer values.

  9. Indeterminate system - Wikipedia

    en.wikipedia.org/wiki/Indeterminate_system

    For a system of linear equations, the number of equations in an indeterminate system could be the same as the number of unknowns, less than the number of unknowns (an underdetermined system), or greater than the number of unknowns (an overdetermined system). Conversely, any of those three cases may or may not be indeterminate.