Search results
Results From The WOW.Com Content Network
Sodium atoms have 11 electrons, one more than the stable configuration of the noble gas neon. As a result, sodium usually forms ionic compounds involving the Na + cation. [1] Sodium is a reactive alkali metal and is much more stable in ionic compounds. It can also form intermetallic compounds and organosodium compounds.
Sodium is a chemical element; it has symbol Na (from Neo-Latin natrium) and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 of the periodic table. Its only stable isotope is 23 Na. The free metal does not occur in nature and must be prepared from compounds.
These elements already have images but they are not the highest quality. These elements aren't too rare, so it shouldn't be too hard to find other pictures. Google's probably the best bet here but it may also be worth asking one of Wikipedia's element photographers (a certain person comes to mind) to see if they can get a better photo. Barium ...
For atoms with many electrons, this notation can become lengthy and so an abbreviated notation is used. The electron configuration can be visualized as the core electrons, equivalent to the noble gas of the preceding period, and the valence electrons: each element in a period differs only by the last few subshells. Phosphorus, for instance, is ...
When sodium (Na) and chlorine (Cl) are combined, the sodium atoms each lose an electron, forming cations (Na +), and the chlorine atoms each gain an electron to form anions (Cl −). These ions are then attracted to each other in a 1:1 ratio to form sodium chloride (NaCl). Na + Cl → Na + + Cl − → NaCl
The electrons are negatively charged, and this opposing charge is what binds them to the nucleus. If the numbers of protons and electrons are equal, as they normally are, then the atom is electrically neutral as a whole. If an atom has more electrons than protons, then it has an overall negative charge and is called a negative ion (or anion ...
FA: current Featured Picture used in the infobox: A: current infobox picture is of high quality (could become FP) B: current infobox picture is of good quality
Electrical mobility is the ability of charged particles (such as electrons or protons) to move through a medium in response to an electric field that is pulling them. The separation of ions according to their mobility in gas phase is called ion mobility spectrometry, in liquid phase it is called electrophoresis.