Search results
Results From The WOW.Com Content Network
Within eukaryotes, DNA replication is controlled within the context of the cell cycle. As the cell grows and divides, it progresses through stages in the cell cycle; DNA replication takes place during the S phase (synthesis phase). The progress of the eukaryotic cell through the cycle is controlled by cell cycle checkpoints.
The number of chondrocyte cells created and their maturation process can be influenced by multiple different genes and proteins. Two proteins, bone morphogenetic protein 4(BMP-4) and fibroblast growth factor 2(FGF2) have been seen to influence the amount of differentiation into chondrocytes. [4]
The eukaryotic cell cycle consists of four distinct phases: G 1 phase, S phase (synthesis), G 2 phase (collectively known as interphase) and M phase (mitosis and cytokinesis). M phase is itself composed of two tightly coupled processes: mitosis, in which the cell's nucleus divides, and cytokinesis, in which the cell's cytoplasm and cell membrane divides forming two daughter cells.
A spotted gar larva at 22 days stained for cartilage (blue) and bone (red). Chondrogenesis is the biological process through which cartilage tissue is formed and developed. . This intricate and tightly regulated cellular differentiation pathway plays a crucial role in skeletal development, as cartilage serves as a fundamental component of the embryonic skele
Replication processes permit copying a single DNA double helix into two DNA helices, which are divided into the daughter cells at mitosis. The major enzymatic functions carried out at the replication fork are well conserved from prokaryotes to eukaryotes , but the replication machinery in eukaryotic DNA replication is a much larger complex ...
In eukaryotes, the cell cycle consists of four main stages: G 1, during which a cell is metabolically active and continuously grows; S phase, during which DNA replication takes place; G 2, during which cell growth continues and the cell synthesizes various proteins in preparation for division; and the M phase, during which the duplicated ...
During the S-phase of each cell cycle (Figure 1), all of the DNA in a cell is duplicated in order to provide one copy to each of the daughter cells after the next cell division. The process of duplicating DNA is called DNA replication, and it takes place by first unwinding the duplex DNA molecule, starting at many locations called DNA ...
During differentiation, stem cells change their gene expression profiles. Recent studies have implicated a role for nucleosome positioning and histone modifications during this process. [38] There are two components of this process: turning off the expression of embryonic stem cell (ESC) genes, and the activation of cell fate genes.