When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Flow distribution in manifolds - Wikipedia

    en.wikipedia.org/wiki/Flow_distribution_in_manifolds

    The flow in manifolds is extensively encountered in many industrial processes when it is necessary to distribute a large fluid stream into several parallel streams, or to collect them into one discharge stream, such as in fuel cells, heat exchangers, radial flow reactors, hydronics, fire protection, and irrigation. Manifolds can usually be ...

  3. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    Using ideal gas equation of state for constant temperature process (i.e., / is constant) and the conservation of mass flow rate (i.e., ˙ = is constant), the relation Qp = Q 1 p 1 = Q 2 p 2 can be obtained. Over a short section of the pipe, the gas flowing through the pipe can be assumed to be incompressible so that Poiseuille law can be used ...

  4. Gay-Lussac's law - Wikipedia

    en.wikipedia.org/wiki/Gay-Lussac's_law

    Under STP, a reaction between three cubic meters of hydrogen gas and one cubic meter of nitrogen gas will produce about two cubic meters of ammonia.. The law of combining volumes states that when gases chemically react together, they do so in amounts by volume which bear small whole-number ratios (the volumes calculated at the same temperature and pressure).

  5. Gas constant - Wikipedia

    en.wikipedia.org/wiki/Gas_constant

    The gas constant occurs in the ideal gas law: = = where P is the absolute pressure, V is the volume of gas, n is the amount of substance, m is the mass, and T is the thermodynamic temperature. R specific is the mass-specific gas constant. The gas constant is expressed in the same unit as molar heat.

  6. Isobaric process - Wikipedia

    en.wikipedia.org/wiki/Isobaric_process

    For a thermally perfect diatomic gas, the molar specific heat capacity at constant pressure (c p) is 7 / 2 R or 29.1006 J mol −1 deg −1. The molar heat capacity at constant volume (c v) is 5 / 2 R or 20.7862 J mol −1 deg −1. The ratio of the two heat capacities is 1.4. [4] The heat Q required to bring the gas from 300 to 600 K is

  7. Boyle's law - Wikipedia

    en.wikipedia.org/wiki/Boyle's_law

    where P is the pressure of the gas, V is the volume of the gas, and k is a constant for a particular temperature and amount of gas. Boyle's law states that when the temperature of a given mass of confined gas is constant, the product of its pressure and volume is also constant. When comparing the same substance under two different sets of ...

  8. Exhaust manifold - Wikipedia

    en.wikipedia.org/wiki/Exhaust_manifold

    When the exhaust valve opens, the high pressure exhaust gas escapes into the exhaust manifold or header, creating an "exhaust pulse" comprising three main parts: The high-pressure head is created by the large pressure difference between the exhaust in the combustion chamber and the atmospheric pressure outside of the exhaust system

  9. Manifold (fluid mechanics) - Wikipedia

    en.wikipedia.org/wiki/Manifold_(fluid_mechanics)

    Types of manifolds in engineering include: Exhaust manifold An engine part that collects the exhaust gases from multiple cylinders into one pipe. Also known as headers. Hydraulic manifold A component used to regulate fluid flow in a hydraulic system, thus controlling the transfer of power between actuators and pumps Inlet manifold (or "intake ...