When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Stefan–Boltzmann law - Wikipedia

    en.wikipedia.org/wiki/Stefan–Boltzmann_law

    What is non-trivial is the proposition that , which is a consequence of Kirchhoff's law of thermal radiation. [4]: 385 ) A so-called grey body is a body for which the spectral emissivity is independent of wavelength, so that the total emissivity, , is a constant.

  3. Planck's law - Wikipedia

    en.wikipedia.org/wiki/Planck's_law

    In physics, Planck's law (also Planck radiation law[ 1 ]: 1305) describes the spectral density of electromagnetic radiation emitted by a black body in thermal equilibrium at a given temperature T, when there is no net flow of matter or energy between the body and its environment. [ 2 ]

  4. Radiation - Wikipedia

    en.wikipedia.org/wiki/Radiation

    The shape of the spectrum and the total amount of energy emitted by the body is a function of the absolute temperature of that body. The radiation emitted covers the entire electromagnetic spectrum and the intensity of the radiation (power/unit-area) at a given frequency is described by Planck's law of radiation. For a given temperature of a ...

  5. Kirchhoff's law of thermal radiation - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff's_law_of_thermal...

    Gustav Kirchhoff (1824–1887) In heat transfer, Kirchhoff's law of thermal radiation refers to wavelength-specific radiative emission and absorption by a material body in thermodynamic equilibrium, including radiative exchange equilibrium. It is a special case of Onsager reciprocal relations as a consequence of the time reversibility of ...

  6. Electromagnetic radiation - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_radiation

    In electromagnetic radiation (such as microwaves from an antenna, shown here) the term radiation applies only to the parts of the electromagnetic field that radiate into infinite space and decrease in intensity by an inverse-square law of power, such that the total energy that crosses through an imaginary sphere surrounding the source is the ...

  7. Thermal radiation - Wikipedia

    en.wikipedia.org/wiki/Thermal_radiation

    Wien's displacement law determines the most likely frequency of the emitted radiation, and the Stefan–Boltzmann law gives the radiant intensity. [4]: 280 Where blackbody radiation is not an accurate approximation, emission and absorption can be modeled using quantum electrodynamics (QED). [1]

  8. Rayleigh–Jeans law - Wikipedia

    en.wikipedia.org/wiki/Rayleigh–Jeans_law

    In physics, the Rayleigh–Jeans law is an approximation to the spectral radiance of electromagnetic radiation as a function of wavelength from a black body at a given temperature through classical arguments. For wavelength λ, it is where is the spectral radiance (the power emitted per unit emitting area, per steradian, per unit wavelength ...

  9. Black-body radiation - Wikipedia

    en.wikipedia.org/wiki/Black-body_radiation

    The law was formulated by Josef Stefan in 1879 and later derived by Ludwig Boltzmann. The formula E = σT 4 is given, where E is the radiant heat emitted from a unit of area per unit time, T is the absolute temperature, and σ = 5.670 367 × 10 −8 W·m −2 ⋅K −4 is the Stefan–Boltzmann constant. [28]