Search results
Results From The WOW.Com Content Network
Heat treatment involves the use of heating or chilling, normally to extreme temperatures, to achieve the desired result such as hardening or softening of a material. Heat treatment techniques include annealing, case hardening, precipitation strengthening, tempering, carburizing, normalizing and quenching.
The amount of time held at the tempering temperature also has an effect. Tempering at a slightly elevated temperature for a shorter time may produce the same effect as tempering at a lower temperature for a longer time. Tempering times vary, depending on the carbon content, size, and desired application of the steel, but typically range from a ...
The exact boundaries of the austenite phase region depend on the chemistry of the alloy being heat treated. However, austenitizing temperatures are typically between 790 and 915 °C (1,454 and 1,679 °F). [5] The amount of time spent at this temperature will vary with the alloy and process specifics for a through-hardened part.
Holloman and Jaffe determined the value of C experimentally by plotting hardness versus tempering time for a series of tempering temperatures of interest and interpolating the data to obtain the time necessary to yield a number of different hardness values. This work was based on six different heats of plain carbon steels with carbon contents ...
The temperature range for process annealing ranges from 260 °C (500 °F) to 760 °C (1400 °F), depending on the alloy in question. This process is mainly suited for low-carbon steel. The material is heated up to a temperature just below the lower critical temperature of steel.
The temperature recommended for seasoning varies from high temperatures above 260 °C (500 °F) to temperatures below 150 °C (302 °F). Seasoning a cast-iron or carbon steel wok is a common process in Asia and Asian-American culture.
Depending on the temperature and composition of the steel, it can be hardened or softened. To make steel harder, it must be heated to very high temperatures. The final result of exactly how hard the steel becomes depends on the amount of carbon present in the metal. Only steel that is high in carbon can be hardened and tempered.
The temperatures indicated above are the peak temperatures in the cooking process, so the meat should be removed from the heat source when it is a few degrees cooler. The meat should be allowed to "rest" for a suitable amount of time (depending on the size of the cut) before being served.