Search results
Results From The WOW.Com Content Network
RBMK reactor fuel was used in Soviet-designed and built RBMK-type reactors. This is a low-enriched uranium oxide fuel. The fuel elements in an RBMK are 3 m long each, and two of these sit back-to-back on each fuel channel, pressure tube. Reprocessed uranium from Russian VVER reactor spent fuel is used to fabricate RBMK fuel.
In a CANDU reactor, this also allows individual fuel elements to be situated within the reactor core that are best suited to the amount of U-235 in the fuel element. The amount of energy extracted from nuclear fuel is called its burnup, which is expressed in terms of the heat energy produced per initial unit of fuel weight. Burnup is commonly ...
Fission product yields by mass for thermal neutron fission of U-235 and Pu-239 (the two typical of current nuclear power reactors) and U-233 (used in the thorium cycle). This page discusses each of the main elements in the mixture of fission products produced by nuclear fission of the common nuclear fuels uranium and plutonium.
The name comes from the magnesium-aluminium alloy (called magnesium non-oxidising), used to clad the fuel rods inside the reactor. Like most other generation I nuclear reactors, the magnox was designed with the dual purpose of producing electrical power and plutonium-239 for the nascent nuclear weapons programme in Britain. The name refers ...
Nuclear reactors with water moderator require at least some enrichment of 235 U. Nuclear reactors with heavy water or graphite moderation can operate with natural uranium, eliminating altogether the need for enrichment and preventing the fuel from being useful for nuclear weapons; the CANDU power reactors used in Canadian power plants are an ...
A sample of thorium. Thorium-based nuclear power generation is fueled primarily by the nuclear fission of the isotope uranium-233 produced from the fertile element thorium.A thorium fuel cycle can offer several potential advantages over a uranium fuel cycle [Note 1] —including the much greater abundance of thorium found on Earth, superior physical and nuclear fuel properties, and reduced ...
The fuel for energy purposes, such as in a nuclear fission reactor, is very different, usually consisting of a low-enriched oxide material (e.g. uranium dioxide, UO 2). There are two primary isotopes used for fission reactions inside of nuclear reactors. The first and most common is uranium-235.
The thorium fuel cycle is a nuclear fuel cycle that uses an isotope of thorium, 232 Th, as the fertile material. In the reactor, 232 Th is transmuted into the fissile artificial uranium isotope 233 U which is the nuclear fuel. Unlike natural uranium, natural thorium contains only trace amounts of fissile material (such as 231 Th