Search results
Results From The WOW.Com Content Network
Surface tension is an important factor in the phenomenon of capillarity. Surface tension has the dimension of force per unit length, or of energy per unit area. [4] The two are equivalent, but when referring to energy per unit of area, it is common to use the term surface energy, which is a more general term in the sense that it applies also to ...
As an example, wine may exhibit a visible effect called "tears of wine". The effect is a consequence of the fact that alcohol has a lower surface tension and higher volatility than water. The water/alcohol solution rises up the surface of the glass lowering the surface energy of the glass. Alcohol evaporates from the film leaving behind liquid ...
Even though this relationship is empirical and less precise than the surface tension of a homologous series of liquids, it is very useful considering it is a parameter of the solid surface. This method is especially used to compare and measure the critical surface tension of low-energy solids (mainly plastics) very quickly and easily.
The surface tension of a liquid directly affects its wettability. Most common liquids have tensions ranging in the tens of mJ/m 2 , so droplets of oil, water, or glue can easily merge and adhere to other surfaces, whereas liquid metals such as mercury may have tensions ranging in the hundreds of mJ/m 2 , thus droplets do not combine easily and ...
A: The bottom of a concave meniscus. B: The top of a convex meniscus. In physics (particularly fluid statics), the meniscus (pl.: menisci, from Greek 'crescent') is the curve in the upper surface of a liquid close to the surface of the container or another object, produced by surface tension.
The effect is observed in small objects which are supported by the surface of a liquid. There are two types of such objects: objects which are sufficiently buoyant that they will always float on the surface (for example, Cheerios in milk), and objects which are heavy enough to sink when immersed, but not so heavy as to overcome the surface tension of the liquid (for example, steel pins on water).
Various life forms found in nature exploit surface tension in different ways. Hu [8] and his colleagues looked at a few examples to create devices that mimic the abilities of their natural counterparts to walk on water, jump off the liquid interface, and climb menisci. Two such devices were a rendition of the water strider. Both devices ...
If the surface tension of water is known which is 72 dyne/cm, we can calculate the surface tension of the specific fluid from the equation. The more drops we weigh, the more precisely we can calculate the surface tension from the equation. [3] The stalagmometer must be kept clean for meaningful readings. There are commercial tubes for ...