When.com Web Search

  1. Ads

    related to: 3 and 4 multiples calculator

Search results

  1. Results From The WOW.Com Content Network
  2. Multiplication - Wikipedia

    en.wikipedia.org/wiki/Multiplication

    Here, 3 (the multiplier) and 4 (the multiplicand) are the factors, and 12 is the product. One of the main properties of multiplication is the commutative property, which states in this case that adding 3 copies of 4 gives the same result as adding 4 copies of 3: = + + + =

  3. Least common multiple - Wikipedia

    en.wikipedia.org/wiki/Least_common_multiple

    A least common multiple of a and b is a common multiple that is minimal, in the sense that for any other common multiple n of a and b, m divides n. In general, two elements in a commutative ring can have no least common multiple or more than one. However, any two least common multiples of the same pair of elements are associates. [10]

  4. Divisibility rule - Wikipedia

    en.wikipedia.org/wiki/Divisibility_rule

    Using the example above: 16,499,205,854,376 has four of the digits 1, 4 and 7 and four of the digits 2, 5 and 8; since 44 = 0 is a multiple of 3, the number 16,499,205,854,376 is divisible by 3. Subtracting 2 times the last digit from the rest gives a multiple of 3. (Works because 21 is divisible by 3)

  5. Order of operations - Wikipedia

    en.wikipedia.org/wiki/Order_of_operations

    [2] [3] Thus, in the expression 1 + 2 × 3, the multiplication is performed before addition, and the expression has the value 1 + (2 × 3) = 7, and not (1 + 2) × 3 = 9. When exponents were introduced in the 16th and 17th centuries, they were given precedence over both addition and multiplication and placed as a superscript to the right of ...

  6. Multiple (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Multiple_(mathematics)

    14, 49, −21 and 0 are multiples of 7, whereas 3 and −6 are not. This is because there are integers that 7 may be multiplied by to reach the values of 14, 49, 0 and −21, while there are no such integers for 3 and −6.

  7. Napier's bones - Wikipedia

    en.wikipedia.org/wiki/Napier's_bones

    Napier's bones is a manually operated calculating device created by John Napier of Merchiston, Scotland for the calculation of products and quotients of numbers. The method was based on lattice multiplication, and also called rabdology, a word invented by Napier.

  8. Play Canasta Online for Free - AOL.com

    www.aol.com/games/play/masque-publishing/canasta

    Play free online Canasta. Meld or go out early. Play four player Canasta with a friend or with the computer.

  9. Multiplication sign - Wikipedia

    en.wikipedia.org/wiki/Multiplication_sign

    This appendix has been attributed to William Oughtred, [3] who used the same symbol in his 1631 algebra text, Clavis Mathematicae, stating: Multiplication of species [i.e. unknowns] connects both proposed magnitudes with the symbol 'in' or ×: or ordinarily without the symbol if the magnitudes be denoted with one letter. [4]