Ads
related to: 3 phase permanent magnet generator design for sale ebay store
Search results
Results From The WOW.Com Content Network
A permanent magnet synchronous generator is a generator where the excitation field is provided by a permanent magnet instead of a coil. The term synchronous refers here to the fact that the rotor and magnetic field rotate with the same speed, because the magnetic field is generated through a shaft-mounted permanent magnet mechanism, and current is induced into the stationary armature.
Alnico is a NRE permanent magnetic material used in permanent magnet motor applications such as magnetic speed and flow sensors, electric generators, and consumer goods. These magnets exhibit weaker performance in comparison to NdFeB and SmCo counterparts but still maintain high coercivity and are far cheaper due to their lack of rare earth metals.
The doubly fed generator rotors are typically wound with 2 to 3 times the number of turns of the stator. This means that the rotor voltages will be higher and currents respectively lower. Thus in the typical ±30% operational speed range around the synchronous speed, the rated current of the converter is accordingly lower which leads to a lower ...
A small residual field in the iron armature of the field coils acted as a weak permanent magnet, and thus a magneto. The shunt wiring of the generator feeds some of its output current back into the field coils, which in turn increases output. Because of this, the field 'builds up' regeneratively, though this may take 20–30 seconds to do so fully.
The coils may span several slots in the stator core, making it tedious to count them. For a 3-phase motor, if you count a total of 12 coil groups, it has 4 magnetic poles. For a 12-pole 3-phase machine, there will be 36 coils. The number of magnetic poles in the rotor is equal to the number of magnetic poles in the stator.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Except for permanent magnet generators, a generator produces output voltage proportional to the magnetic flux, which is the sum of flux from the magnetization of the structure and the flux proportional to the field produced by the excitation current. If there is no excitation current the flux is tiny and the armature voltage is almost nil.
A generator coupling an EDFMG containing an 8.75 cm 3 of magnetic material with a spiral vector inversion generator yielded a pulse of amplitude over 40 kilovolts with a rise time of 6.2 nanoseconds. [4] Generators delivering pulses over 50 kV and 5 kA were demonstrated. [5] Ultra-compact generators with diameter less than 50 mm were developed.