Search results
Results From The WOW.Com Content Network
Model selection is the task of selecting a model from among various candidates on the basis of performance criterion to choose the best one. [1] In the context of machine learning and more generally statistical analysis , this may be the selection of a statistical model from a set of candidate models, given data.
Henry's [26] proposes an extended model-assisted weighting design-effect measure for single-stage sampling and calibration weight adjustments for a case where = + +, where is a vector of covariates, the model errors are independent, and the estimator of the population total is the general regression estimator (GREG) of Särndal, Swensson, and ...
A basic tool for econometrics is the multiple linear regression model. [8] Econometric theory uses statistical theory and mathematical statistics to evaluate and develop econometric methods. [ 9 ] [ 10 ] Econometricians try to find estimators that have desirable statistical properties including unbiasedness , efficiency , and consistency .
When the statistical model has several parameters, however, the mean of the parameter-estimator is a vector and its variance is a matrix. The inverse matrix of the variance-matrix is called the "information matrix". Because the variance of the estimator of a parameter vector is a matrix, the problem of "minimizing the variance" is complicated.
In statistics, econometrics, political science, epidemiology, and related disciplines, a regression discontinuity design (RDD) is a quasi-experimental pretest–posttest design that aims to determine the causal effects of interventions by assigning a cutoff or threshold above or below which an intervention is assigned.
"I [thought to myself], ‘Oh, no, this is not going to happen today,’ ” Linda Rosa recalled of the incident
LONDON/SINGAPORE (Reuters) -European shares ticked up on Thursday after falling the previous day, while Asian stocks slipped, as trading volumes thinned ahead of the U.S. Thanksgiving holiday.
A "bucket of models" is an ensemble technique in which a model selection algorithm is used to choose the best model for each problem. When tested with only one problem, a bucket of models can produce no better results than the best model in the set, but when evaluated across many problems, it will typically produce much better results, on ...