Ads
related to: algebraic expression roots
Search results
Results From The WOW.Com Content Network
In mathematics, an algebraic expression is an expression built up from constants (usually, algebraic numbers) variables, and the basic algebraic operations: addition (+), subtraction (-), multiplication (×), division (÷), whole number powers, and roots (fractional powers).
A solution in radicals or algebraic solution is an expression of a solution of a polynomial equation that is algebraic, that is, relies only on addition, subtraction, multiplication, division, raising to integer powers, and extraction of n th roots (square roots, cube roots, etc.). A well-known example is the quadratic formula
The algebraic equations are the basis of a number of areas of modern mathematics: Algebraic number theory is the study of (univariate) algebraic equations over the rationals (that is, with rational coefficients). Galois theory was introduced by Évariste Galois to specify criteria for deciding if an algebraic equation may be solved in terms of ...
Any expression formed from algebraic numbers using any combination of the basic arithmetic operations and extraction of n th roots gives another algebraic number. Polynomial roots that cannot be expressed in terms of the basic arithmetic operations and extraction of n th roots (such as the roots of x 5 − x + 1).
In calculus and mathematical analysis, algebraic operation is also used for the operations that may be defined by purely algebraic methods. For example, exponentiation with an integer or rational exponent is an algebraic operation, but not the general exponentiation with a real or complex exponent. Also, the derivative is an operation that is ...
In mathematics, an algebraic function is a function that can be defined as the root of an irreducible polynomial equation. Algebraic functions are often algebraic expressions using a finite number of terms, involving only the algebraic operations addition, subtraction, multiplication, division, and raising to a fractional power. Examples of ...
Any permutation of the roots which respects algebraic equations as described above gives rise to an automorphism of L/K, and vice versa. In the first example above, we were studying the extension Q(√ 3)/Q, where Q is the field of rational numbers, and Q(√ 3) is the field obtained from Q by adjoining √ 3.
Solving quintic equations in terms of radicals (nth roots) was a major problem in algebra from the 16th century, when cubic and quartic equations were solved, until the first half of the 19th century, when the impossibility of such a general solution was proved with the Abel–Ruffini theorem.