Search results
Results From The WOW.Com Content Network
A circle with an equilateral chord (red). One sixtieth of this arc is a degree. Six such chords complete the circle. [6] The original motivation for choosing the degree as a unit of rotations and angles is unknown. One theory states that it is related to the fact that 360 is approximately the number of days in a year.
The degree symbol or degree sign, °, is a glyph or symbol that is used, among other things, to represent degrees of arc (e.g. in geographic coordinate systems), hours (in the medical field), degrees of temperature or alcohol proof. The symbol consists of a small superscript circle.
The angle subtended by a complete circle at its centre is a complete angle, which measures 2 π radians, 360 degrees, or one turn. Using radians, the formula for the arc length s of a circular arc of radius r and subtending a central angle of measure 𝜃 is s = θ r , {\displaystyle s=\theta r,}
A circular sector is shaded in green. Its curved boundary of length L is a circular arc. A circular arc is the arc of a circle between a pair of distinct points.If the two points are not directly opposite each other, one of these arcs, the minor arc, subtends an angle at the center of the circle that is less than π radians (180 degrees); and the other arc, the major arc, subtends an angle ...
Circle symbol may refer to (in ascending order of size, approximately): ˚, ring diacritic , white bullet; ∘, function composition °, degree symbol;
English: Circle_Divided_into_degrees (10) العربية: دائرة مقسمة إلى تدريجات من 10 درجات Français : Cercle graduée avec des mesures d'angles de 10 degrés.
Since C = 2πr, the circumference of a unit circle is 2π. In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. [1] Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Euclidean plane.
The length of a degree of longitude (east–west distance) depends only on the radius of a circle of latitude. For a sphere of radius a that radius at latitude φ is a cos φ, and the length of a one-degree (or π / 180 radian) arc along a circle of latitude is