Search results
Results From The WOW.Com Content Network
In thermodynamics, an isochoric process, also called a constant-volume process, an isovolumetric process, or an isometric process, is a thermodynamic process during which the volume of the closed system undergoing such a process remains constant. An isochoric process is exemplified by the heating or the cooling of the contents of a sealed ...
The two independent theories address the physical phenomena of light and matter. In 1905, Albert Einstein argued that the requirement of consistency between thermodynamics and electromagnetism [3] leads to the conclusion that light is quantized, obtaining the relation =. This paper is the dawn of quantum theory.
An independent process is one that could proceed even if all others were unaccountably stopped in their tracks. Understanding this is perhaps a "thought experiment" in chemical kinetics, but actual examples exist.
In contrast, the Gibbs free energy or free enthalpy is most commonly used as a measure of thermodynamic potential (especially in chemistry) when it is convenient for applications that occur at constant pressure. For example, in explosives research Helmholtz free energy is often used, since explosive reactions by their nature induce pressure ...
According to the first section above, an heating for a solid can not be a isochoric, so the pressure change in a non-isochoric heating process is not exactly the thermal pressure. When a solid is loaded with a pressure gauge, and heated/compressed together at high P - T , the thermal pressure of the solid does not equal that of its gauge.
Isochoric may refer to: cell-transitive, in geometry; isochoric process, a constant volume process in chemistry or thermodynamics; Isochoric model
The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".
A corollary of Kasha's rule is the Vavilov rule, which states that the quantum yield of luminescence is generally independent of the excitation wavelength. [4] [7] This can be understood as a consequence of the tendency – implied by Kasha's rule – for molecules in upper states to relax to the lowest excited state non-radiatively.