When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of arbitrary-precision arithmetic software - Wikipedia

    en.wikipedia.org/wiki/List_of_arbitrary...

    dc: "Desktop Calculator" arbitrary-precision RPN calculator that comes standard on most Unix-like systems. KCalc, Linux based scientific calculator; Maxima: a computer algebra system which bignum integers are directly inherited from its implementation language Common Lisp. In addition, it supports arbitrary-precision floating-point numbers ...

  3. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    Some programming languages such as Lisp, Python, Perl, Haskell, Ruby and Raku use, or have an option to use, arbitrary-precision numbers for all integer arithmetic. Although this reduces performance, it eliminates the possibility of incorrect results (or exceptions) due to simple overflow.

  4. Type conversion - Wikipedia

    en.wikipedia.org/wiki/Type_conversion

    In computer science, type conversion, [1] [2] type casting, [1] [3] type coercion, [3] and type juggling [4] [5] are different ways of changing an expression from one data type to another. An example would be the conversion of an integer value into a floating point value or its textual representation as a string, and vice versa.

  5. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    A floating-point number is a rational number, because it can be represented as one integer divided by another; for example 1.45 × 10 3 is (145/100)×1000 or 145,000 /100. The base determines the fractions that can be represented; for instance, 1/5 cannot be represented exactly as a floating-point number using a binary base, but 1/5 can be ...

  6. Floor and ceiling functions - Wikipedia

    en.wikipedia.org/wiki/Floor_and_ceiling_functions

    Int function from floating-point conversion in C. In most programming languages, the simplest method to convert a floating point number to an integer does not do floor or ceiling, but truncation. The reason for this is historical, as the first machines used ones' complement and truncation was simpler to implement (floor is simpler in two's ...

  7. bc (programming language) - Wikipedia

    en.wikipedia.org/wiki/Bc_(programming_language)

    bc first appeared in Version 6 Unix in 1975. It was written by Lorinda Cherry of Bell Labs as a front end to dc, an arbitrary-precision calculator written by Robert Morris and Cherry. dc performed arbitrary-precision computations specified in reverse Polish notation. bc provided a conventional programming-language interface to the same capability via a simple compiler (a single yacc source ...

  8. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    Conversion of the fractional part: Consider 0.375, the fractional part of 12.375. To convert it into a binary fraction, multiply the fraction by 2, take the integer part and repeat with the new fraction by 2 until a fraction of zero is found or until the precision limit is reached which is 23 fraction digits for IEEE 754 binary32 format.

  9. Round-off error - Wikipedia

    en.wikipedia.org/wiki/Round-off_error

    Compared with the fixed-point number system, the floating-point number system is more efficient in representing real numbers so it is widely used in modern computers. While the real numbers are infinite and continuous, a floating-point number system is finite and discrete. Thus, representation error, which leads to roundoff error, occurs under ...