Search results
Results From The WOW.Com Content Network
The onset temperature of reaction between the basal plane of single-layer graphene and oxygen gas is below 260 °C (530 K). [2] Graphene combusts at 350 °C (620 K). [ 3 ] Graphene is commonly modified with oxygen- and nitrogen-containing functional groups and analyzed by infrared spectroscopy and X-ray photoelectron spectroscopy .
The two-dimensional electron system in graphene can be tuned to either a 2DEG or 2DHG (2-D hole gas) by gating or chemical doping. This has been a topic of current research due to the versatile (some existing but mostly envisaged) applications of graphene. [2] A separate class of heterostructures that can host 2DEGs are oxides.
Graphene doped with various gaseous species (both acceptors and donors) can be returned to an undoped state by gentle heating in vacuum. [22] [24] Even for dopant concentrations in excess of 10 12 cm −2 carrier mobility exhibits no observable change. [24] Graphene doped with potassium in ultra-high vacuum at low temperature can reduce ...
Graphene analogs [332] (also referred to as "artificial graphene") are two-dimensional systems which exhibit similar properties to graphene. Graphene analogs have been studied intensively since the discovery of graphene in 2004. People try to develop systems in which the physics is easier to observe and manipulate than in graphene.
Graphene is so thin that water has near-perfect wetting transparency which is an important property particularly in developing bio-sensor applications. [17] This means that a sensor coated in graphene has as much contact with an aqueous system as an uncoated sensor, while remaining protected mechanically from its environment.
A rapidly increasing list of graphene production techniques have been developed to enable graphene's use in commercial applications. [1]Isolated 2D crystals cannot be grown via chemical synthesis beyond small sizes even in principle, because the rapid growth of phonon density with increasing lateral size forces 2D crystallites to bend into the third dimension. [2]
Graphane is a two-dimensional polymer of carbon and hydrogen with the formula unit (CH) n where n is large. [1] Partial hydrogenation results in hydrogenated graphene, which was reported by Elias et al. in 2009 by a TEM study to be "direct evidence for a new graphene-based derivative".
Bilayer graphene displays the anomalous quantum Hall effect, a tunable band gap [3] and potential for excitonic condensation. [4] Bilayer graphene typically can be found either in twisted configurations where the two layers are rotated relative to each other or graphitic Bernal stacked configurations where half the atoms in one layer lie atop half the atoms in the other. [5]