Search results
Results From The WOW.Com Content Network
In the mathematical theory of games, in particular the study of zero-sum continuous games, not every game has a minimax value. This is the expected value to one of the players when both play a perfect strategy (which is to choose from a particular PDF). This article gives an example of a zero-sum game that has no value. It is due to Sion and ...
This result is known as the ErdÅ‘s–Ginzburg–Ziv theorem after its discoverers. It may also be deduced from the Cauchy–Davenport theorem. [2] More general results than this theorem exist, such as Olson's theorem, Kemnitz's conjecture (proved by Christian Reiher in 2003 [3]), and the weighted EGZ theorem (proved by David J. Grynkiewicz in ...
In mathematics, zero-sum Ramsey theory or zero-sum theory is a branch of combinatorics.It deals with problems of the following kind: given a combinatorial structure whose elements are assigned different weights (usually elements from an Abelian group), one seeks for conditions that guarantee the existence of certain substructure whose weights of its elements sum up to zero (in ).
The zero-sum property (if one gains, another loses) means that any result of a zero-sum situation is Pareto optimal. Generally, any game where all strategies are Pareto optimal is called a conflict game. [7] [8] Zero-sum games are a specific example of constant sum games where the sum of each outcome is always zero. [9]
Other zero-sum games include matching pennies and most classical board games including Go and chess. Many games studied by game theorists (including the famed prisoner's dilemma) are non-zero-sum games, because the outcome has net results greater or less than zero. Informally, in non-zero-sum games, a gain by one player does not necessarily ...
Sion's minimax theorem is a generalization of von Neumann's minimax theorem due to Maurice Sion, [6] relaxing the requirement that It states: [6] [7] Let X {\displaystyle X} be a convex subset of a linear topological space and let Y {\displaystyle Y} be a compact convex subset of a linear topological space .
In mathematics, an empty sum, or nullary sum, [1] is a summation where the number of terms is zero. The natural way to extend non-empty sums [ 2 ] is to let the empty sum be the additive identity . Let a 1 {\displaystyle a_{1}} , a 2 {\displaystyle a_{2}} , a 3 {\displaystyle a_{3}} , ... be a sequence of numbers, and let
Let A be the sum of the negative values and B the sum of the positive values; the number of different possible sums is at most B-A, so the total runtime is in (()). For example, if all input values are positive and bounded by some constant C , then B is at most N C , so the time required is O ( N 2 C ) {\displaystyle O(N^{2}C)} .