When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Handshaking lemma - Wikipedia

    en.wikipedia.org/wiki/Handshaking_lemma

    In graph theory, the handshaking lemma is the statement that, in every finite undirected graph, the number of vertices that touch an odd number of edges is even. For example, if there is a party of people who shake hands, the number of people who shake an odd number of other people's hands is even. [1]

  3. Double counting (proof technique) - Wikipedia

    en.wikipedia.org/wiki/Double_counting_(proof...

    In more colloquial terms, in a party of people some of whom shake hands, an even number of people must have shaken an odd number of other people's hands; for this reason, the result is known as the handshaking lemma. To prove this by double counting, let () be the degree of vertex . The number of vertex-edge incidences in the graph may be ...

  4. Dual graph - Wikipedia

    en.wikipedia.org/wiki/Dual_graph

    Euler's formula, which is self-dual, is one example. Another given by Harary involves the handshaking lemma, according to which the sum of the degrees of the vertices of any graph equals twice the number of edges. In its dual form, this lemma states that in a plane graph, the sum of the numbers of sides of the faces of the graph equals twice ...

  5. Lemma (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Lemma_(mathematics)

    In mathematics and other fields, [a] a lemma (pl.: lemmas or lemmata) is a generally minor, proven proposition which is used to prove a larger statement. For that reason, it is also known as a "helping theorem " or an "auxiliary theorem".

  6. Glossary of graph theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_graph_theory

    The total degree is the sum of the degrees of all vertices; by the handshaking lemma it is an even number. The degree sequence is the collection of degrees of all vertices, in sorted order from largest to smallest. In a directed graph, one may distinguish the in-degree (number of incoming edges) and out-degree (number of outgoing edges).

  7. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    Cameron–ErdÅ‘s theorem (discrete mathematics) Cameron–Martin theorem (measure theory) Cantor–Bernstein–Schroeder theorem (set theory, cardinal numbers) Cantor's intersection theorem (real analysis) Cantor's isomorphism theorem (order theory) Cantor's theorem (set theory, Cantor's diagonal argument)

  8. Chinese postman problem - Wikipedia

    en.wikipedia.org/wiki/Chinese_postman_problem

    For the route inspection problem, T should be chosen as the set of all odd-degree vertices. By the assumptions of the problem, the whole graph is connected (otherwise no tour exists), and by the handshaking lemma it has an even number of odd vertices, so a T-join always exists.

  9. Logic of graphs - Wikipedia

    en.wikipedia.org/wiki/Logic_of_graphs

    The satisfiability problem for a sentence of monadic second-order logic is the problem of determining whether there exists at least one graph (possibly within a restricted family of graphs) for which the sentence is true. For arbitrary graph families, and arbitrary sentences, this problem is undecidable.